Hostname: page-component-78c5997874-mlc7c Total loading time: 0 Render date: 2024-11-19T09:31:32.838Z Has data issue: false hasContentIssue false

Quantitative Characterization of Dislocation Structure coupled with Electromigration in a Passivated Al (0.5wt%Cu) Interconnects

Published online by Cambridge University Press:  01 February 2011

R.I. Barabash
Affiliation:
Metals & Ceramics Divisions, Oak Ridge National Laboratory, Oak Ridge TN 37831
N. Tamura
Affiliation:
Lawrence Berkeley National Laboratory, 1 Cyclotron Road, Berkeley CA 94720
B.C. Valek
Affiliation:
Dept. Materials Science & Engineering, Stanford University, Stanford CA 94305
R. Spolenak
Affiliation:
Max Planck Institut für Metallforschung, Heisenbergstrasse 3, D-7056 Stuttgart, Germany
J.C. Bravman
Affiliation:
Dept. Materials Science & Engineering, Stanford University, Stanford CA 94305
G.E. Ice
Affiliation:
Metals & Ceramics Divisions, Oak Ridge National Laboratory, Oak Ridge TN 37831
J.R. Pate
Affiliation:
Lawrence Berkeley National Laboratory, 1 Cyclotron Road, Berkeley CA 94720
Get access

Abstract

New synchrotron x-ray microbeam methodology is used to analyze and test the reliability of interconnects. The early stage of plastic deformation induced by electromigration before any damages become visible has been recently revealed by white beam scanning X-ray microdiffraction during an accelerated test on Al interconnect lines. In the present paper, we provide a quantitative analysis of the dislocation structure generated in several micron-sized Al grains in both the middle region and ends of the interconnect line during an in-situ electromigration experiment. We demonstrate that the evolution of the dislocation structure during electromigration is highly inhomogeneous and results in the formation of randomly distributed geometrically necessary dislocations as well as geometrically necessary boundaries. The orientation of the activated slip systems and rotation axis depends on the position of the grain in the interconnect line. The origin of the observed plastic deformation is considered in view of constraints for dislocation arrangements under applied electric field during electromigration. The coupling between plastic deformation and precipitation in the Al (0.5% wt. Cu) is observed for the grains close to the anode/cathode end of the line.

Type
Research Article
Copyright
Copyright © Materials Research Society 2003

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1 Blech, I.A., J. Appl. Phys., 47, 1203 (1976).Google Scholar
2 Thompson, C.V. and Lloyd, J.R., Mater. Res. Soc., Bull. 18, 19 (1993).Google Scholar
3 Korhonen, M.A., Borgesen, P., Tu, K.N., and Li, C.Y., J. Appl. Phys. 73, 3790 (1993).Google Scholar
4 Tamura, N., MacDowell, A.A., Celestre, R.S., Padmore, H.A., Valek, B.C., Bravman, J.C., Spolenak, R., Brown, W.L., Marieb, T., Fujimoto, H., Batterman, B.W. and Patel, J.R., Appl. Phys. Lett. 80, 3724 (2002).Google Scholar
5 Tamura, N.; Spolenak, R., Valek, B.C.; Manceau, A.; Chang, M. Meier; Celestre, R.S.; MacDowell, A.A.; Padmore, H.A. and Patel, J.R.; Review of Scientific Instruments 73, 1369 (2002).Google Scholar
6 MacDowell, A.A., Celestre, R.S., Tamura, N., Spolenak, R., Valek, B.C., Brown, W.L., Bravman, J.C., Padmore, H.A., Batterman, B.W. and Patel, J.R., Nuclear Instruments and Methods in Physics Research A 467-468, 936 (2001).Google Scholar
7 Ice, G.E. and Larson, B. C., Advanced Engineering Materials, 2, 10, 643 (2002).Google Scholar
8 Larson, B.C., Yang, Wenge, Ice, G.E., Budai, J.D. and Tischler, J.Z., Nature, 415, 887 (2002).Google Scholar
9 Wang, P.C., Noyan, I. C., Kaldor, S. K., Jordan-Sweet, J. L., Liniger, E. G., and Ku, C.H., Appl. Phys. Lett., 78, 2712 (2001).Google Scholar
10 Wang, P. C., Cargill, G. S. III, Noyan, I. C., Hu, C. K., Appl. Phys. Lett., 72, 1296 (1998).Google Scholar
11 Tamura, N., Chung, J.S., Ice, G.E., Larson, B.C., Budai, J.D., Tischler, J.Z., Yoon, M., E.L.Williams, andLowe, W.P., Mater. Res. Soc. Symp. Proc., 563, 175 (1999).Google Scholar
12 Tamura, N., Valek, B. C., Spolenak, R., MacDowell, A. A., Celestre, R. S., Padmore, H.A., Brown, W. L., Marieb, T., Bravman, J. C., Batterman, B.W. and Patel, J. R., Mat. Res. Soc. Symp. Proc., 612, D.8.8.1 (2001).Google Scholar
13 Spolenak, R., Barr, D.L., Gross, M.E., Evans-Lutherodt, K., Brown, W.L., Tamura, N., MacDowell, A.A., Celestre, R.S., Padmore, H.A., Patel, J.R., Valek, B.C., Bravman, J.C., Flinn, P., Marieb, T., Keller, R.R., Batterman, B.W., Mater. Res. Soc. Symp. Proc., 612, D10.3.1 (2001).Google Scholar
14 Valek, B.C., Tamura, N., Spolenak, R.; MacDowell, A.A.; Celestre, R.S.; Padmore, H.A.; Bravman, J.C.; Batterman, B.W.; Patel, J.R., Mat. Res. Soc. Symp. Proc. 673, P7.7.1 (2001).Google Scholar
15 Valek, B.C., Tamura, N., Spolenak, R., Bravman, J.C., MacDowell, A.A., Celestre, R.S., Padmore, H.A., Brown, W.L., Batterman, B.W. and Patel, J.R., Appl. Phys. Lett. 81, 4168 (2002).Google Scholar
16 Barabash, R.I., Ice, G.E., Tamura, N., Valek, B.C., Bravman, J. C., Spolenak, R. and Patel, J.R., J. Appl. Physics, 93, 5701 (2003).Google Scholar
17 Barabash, R.I., Ice, G.E., Tamura, N., Valek, B.C., Bravman, J. C., Spolenak, R. and Patel, J.R., Mater.Res.Soc.Symp.Proc., 738, (2003).Google Scholar
18 Witt, C., Volkert, C., Arzt, E., Acta Materialia, 51, 49 (2003).Google Scholar
19 Spolenak, R., Kraft, O., and Arzt, E., AIP. Con. Proc., 491, 126 1999.Google Scholar
20 Barabash, R., Ice, G.E., Larson, B.C., Pharr, G.M., Chung, K.S., Yang, W., Appl. Phys. Lett., 79, 749, (2001).Google Scholar
21 Barabash, R., Ice, G., in press.Google Scholar
22 Barabash, R., Ice, G.E., Walker, F., J. Appl. Physics, 93, 3, 1457 (2003)Google Scholar