Hostname: page-component-7c8c6479df-hgkh8 Total loading time: 0 Render date: 2024-03-28T13:03:11.450Z Has data issue: false hasContentIssue false

PZT Electro-Optic Waveguide Devices Fabricated by Solid-Phase Epitaxy

Published online by Cambridge University Press:  10 February 2011

Keiichi Nashimoto*
Affiliation:
Optical Devices Laboratory, Fuji Xerox Co. Ltd., Kanagawa, Japan
Shigetoshi Nakamura
Affiliation:
Optical Devices Laboratory, Fuji Xerox Co. Ltd., Kanagawa, Japan
Hiroaki Moriyama
Affiliation:
Optical Devices Laboratory, Fuji Xerox Co. Ltd., Kanagawa, Japan
Masao Watanabe
Affiliation:
Optical Devices Laboratory, Fuji Xerox Co. Ltd., Kanagawa, Japan
Eisuke Osakabe
Affiliation:
Optical Devices Laboratory, Fuji Xerox Co. Ltd., Kanagawa, Japan
Get access

Abstract

High quality epitaxial PZT optical waveguides have been grown by solid-phase epitaxy based on metal alkoxide solution process. Optical propagation loss was 4 dB/cm in epitaxial PZT thin film optical waveguides grown on SrTiO3 substrates. Epitaxial PZT optical waveguides were grown on Nb doped conductive SrTiO3 substrates, since considerable reduction in drive voltage will be expected when top electrode / optical waveguide / conductive substrate structures are realized. Propagation loss was relatively large, as compared with the structure using non-dope insulative substrates. Preliminary electrooptic deflection devices were fabricated by preparing prism electrodes on the surface of the PZT optical waveguides. Efficient deflection/switching of coupled laser beam in the PZT optical waveguides as large as 26 mrad was observed by applying 70 volts between prism electrode and Nb doped SrTiO3 substrates.

Type
Research Article
Copyright
Copyright © Materials Research Society 1998

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1) Nishihara, H., Haruna, M. and Suhara, T., Optical Integrated Circuits (McGraw-Hill, New York, 1989) p. 155.Google Scholar
2) Nashimoto, K., Fork, D. K. and Geballe, T. H., Appl. Phys. Lett. 60, 1199 (1992).Google Scholar
3) Nashimoto, K., Nakamura, S. and Moriyama, H., Jpn. J. Appl. Phys. 34, 5091 (1995).Google Scholar
4) Higashino, H., Kawaguchi, T., Adachi, H., Makino, T. and Yamazaki, O., Proc. Sixth Int. Meeting on Ferroelectricity, Kobe, 1985, Jpn. J. Appl. Phys. 24 (1985) Suppl. 24-2, p. 284.Google Scholar
5) Nashimoto, K., Moriyama, H. and Osakabe, E., Jpn. J. Appl. Phys. 35, 4936 (1996).Google Scholar
6) Nashimoto, K. and Nakamura, S., Jpn. J. Appl. Phys. 33, 5147 (1994).Google Scholar
7) Yariv, A., Optical Electronics, 4th ed. (Holt, Rinehart, and Winston, New York, 1991) p. 336.Google Scholar
8) Nashimoto, K., Fork, D. K. and Anderson, G. B., Appl. Phys. Lett. 66, 822 (1995).Google Scholar
9) Yi, G., Wu, Z. and Sayer, M., J. Appl. Phys. 64, 2717 (1988).Google Scholar
10) Adachi, H. and Wasa, K., in Ferroelectric Thin Films, edited by Myers, E. R. and Kingon, A. I. (Mater. Res. Soc. Proc. 200, Pittsburgh, PA, 1993) pp. 103114.Google Scholar
11) Chen, Q., Chiu, Y., Lambeth, D. N., Schlesinger, T. E. and Stancil, D. D., J. Lightwave Technol., 12, 1401 (1994).Google Scholar
12) Busch, J. R., Ramamurthi, S. D., Swartz, S. L. and Wood, V. E., Electron. Lett. 28, 1591(1992).Google Scholar