Hostname: page-component-7bb8b95d7b-2h6rp Total loading time: 0 Render date: 2024-09-25T12:39:07.713Z Has data issue: false hasContentIssue false

Pulsed Laser Ablation of Boron Nitride

Published online by Cambridge University Press:  15 February 2011

Keon Bae Shin
Affiliation:
Department of Chemistry, Kyung Hee University, Seoul 130-701, Korea
Seung Min Park
Affiliation:
Department of Chemistry, Kyung Hee University, Seoul 130-701, Korea
Young Man Kim
Affiliation:
Advanced Analysis Center, Korea Institute of Science and Technology, Seoul 130-650, Korea
Get access

Abstract

The probe beam deflection and optical time-of-flight method have been applied to study the dynamics of Nd:YAG laser (266 nm) ablation of pyrolytic boron nitride. Shock wave generation was observed and its velocity was derived by analysis of the acoustic transit time of the acoustic wave produced by laser ablation. The most probable velocities of B and B+ were obtained by optical time-of flight technique. The deposition of boron nitride on silicon substrate by laser ablation was attempted in nitrogen atmosphere. Cubic phase of boron nitride was observed as well as the hexagonal phase.

Type
Research Article
Copyright
Copyright © Materials Research Society 1996

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1 Marine, W., Tokarev, V., Gerri, M., Sentis, M. and Fogarassy, E., Thin Solid Films 241, p. 103 (1994).Google Scholar
2 Friedmann, T. A., McCarty, K. F., Klaus, E. J., Barbour, J. C., Clift, W. M., Johnsen, H. A., Medlin, D. L., Mills, M. J. and Ottesen, D. K., Thin Solid Films 237, p. 48 (1994).Google Scholar
3 De Giorgi, M. L., Leggieri, G., Luches, A., Martino, M., Perrone, A., Majni, G., Mengucci, P., Zemek, J. and Mihailescu, I. N., Appl. Phys. A 60, p. 275 (1995).Google Scholar
4 Zhao, X.-A., Ong, C. W., Tsang, Y. C., Wong, Y. W., Chan, P. W. and Choy, C. L., Appl. Phys. Lett. 66, p. 2652(1995).Google Scholar
5 Kools, J. C. S., Nillesen, C. J. C. M., Brongersma, S. H., van de Riet, E. and Dieleman, J., J. Vac. Sci. Technol. A 10, p. 1809 (1992).Google Scholar
6 Matthias, E., Reichling, M., Siegel, J., Kading, O. W., Petzoldt, S., Skurk, H., Bizenberger, P. and Neske, E., Appl. Phys. A 58, p. 129 (1994).Google Scholar
7 Dreyfus, R. W., J. Appl. Phys. 69, p. 1721 (1991).Google Scholar
8 Amoruso, S., Berardi, V., Dente, A., Spinelli, N., Armenante, M., Velotta, R., Fuso, F., Allegrini, M. and Arimondo, E., J. Appl. Phys. 78, p. 494 (1995).Google Scholar
9 Vega, F., Afonso, C. N. and Solis, J., J. Appl. Phys. 73, p. 2472 (1993).Google Scholar
10 Gilgenbach, R. M. and Ventzek, P. L. G., Appl. Phys. Lett. 58, p. 1597 (1991).11.S. G. Hansen, J. Appl. Phys. 66, p. 1411 (1989).Google Scholar
12 Toth, Z., Hopp, B., Kantor, Z., Ignacz, F., Szorenyi, T. and Bor, Z., Appl. Phys. A 60, p. 431 (1995).Google Scholar
13 Sell, J. A., Heffelfinger, D. M., Ventzek, P. L. G. and Gilgenbach, R. M., J. Appl. Phys. 69, p. 1330 (1991).Google Scholar
14 Zheng, J. P., Ying, Q. Y., Witanachchi, S., Huang, Z. Q., Shaw, D. T. and Kwok, H. S., Appl. Phys. Lett. 54, p. 954 (1989).Google Scholar
15 Gonzalo, J., Vega, F. and Afonoso, C. N., Thin Solid Films 241, p. 96, (1994).Google Scholar
16 Dworschak, W., Jung, K. and Ehrhardt, H., Thin Solid Films 254, p. 65, (1995).Google Scholar