Hostname: page-component-8448b6f56d-sxzjt Total loading time: 0 Render date: 2024-04-23T20:11:34.964Z Has data issue: false hasContentIssue false

P-type Conduction in Bulk ZnSe by Nitrogen Ion-Implantation

Published online by Cambridge University Press:  21 February 2011

M. K. Jin
Affiliation:
Department of Electrical and Computer Engineering, University of California, Santa Barbara, CA 93106
T. Yasuda
Affiliation:
Department of Electrical and Computer Engineering, University of California, Santa Barbara, CA 93106
K. Shahzad
Affiliation:
Philips Laboratories, North American Philips Corporation, 345 Scarborough Road, Briarcliff Manor, N.Y. 10510
J. L. Merz
Affiliation:
Department of Electrical and Computer Engineering, University of California, Santa Barbara, CA 93106
Get access

Abstract

P-type conduction in bulk ZnSe has been achieved using 1×1016 cm−2 nitrogen (N) ionimplantation followed by a high temperature rapid thermal annealing. Room temperature Hall effect measurements of the sample show that the hole concentration is ∼1×1017 cm−3, and the mobility is ∼30 cm2/V-s. Photoluminescence (PL) measurements were performed to study the optical behavior of the samples, and the results show that the ion implantation damage can be partially repaired by thermal annealing at 900°C or higher. Thermal degradation and recovery of the ion-implantation damage were studied as a function of the annealing temperature.

Type
Research Article
Copyright
Copyright © Materials Research Society 1992

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

[1] Yasuda, T., Mitsuishi, I. and Kukimoto, H., Appl. Phys. Lett. 52, 57 (1988).Google Scholar
[2] Cheng, H., Depuydt, J. M., Potts, J. E. and Smith, T. L., Appl. Phys. Lett. 52, 147 (1988).Google Scholar
[3] Ohki, A., Shibata, N. and Zembutsu, S., Jpn. J. Appl. Phys. 27, L909 (1988).Google Scholar
[4] Akimoto, K., Miyajima, T. and Mori, Y., Jpn. J. Appl. Phys. 28, L528 (1989).Google Scholar
[5] Akimoto, K., Miyajima, T. and Mori, Y., Jpn. J. Appl. Phys. 28, L531 (1989).Google Scholar
[6] Migita, M., Taike, A., Shiiki, M. and Yamamoto, H., J. Cryst. Growth 101, 835 (1990).Google Scholar
[7] Mitsuhashi, H., Yahata, A., Uemoto, T., Kamata, A., Okajima, M., Hirahara, K. and Beppu, T., J. Cryst. Growth 101, 818 (1990).Google Scholar
[8] Park, R. M., Troffer, M. B., Rouleau, C. M., DePuydt, J. M. and Hasse, M. A., Appl. Phys. Lett. 57, 2127 (1990).Google Scholar
[9] Ohkawa, K., Karasawa, T. and Mitsuyu, T., Jpn. J. Appl. Phys. 30, L152 (1991).Google Scholar
[10] Marshall, T. and Cammack, D. A., J. Appl. Phys. 6, 4149 (1991).Google Scholar
[11] Park, Y. S. and Chung, C. H., Appl. Phys. Lett. 18, 99 (1971).Google Scholar
[12] Park, Y. S. and Shin, B. K., J. Appl. Phys. 45, 1444 (1974).Google Scholar
[13] Chung, C. H., Yoon, H. W. and Kang, H. S., Proceedings of the 4th International Conference on Ion Implantation in Semiconductors and Other Materials. Osaka, 1974.Google Scholar
[14] Wu, Z. L., Merz, J. L., Werkhoven, C. J., Fiztpatrick, B. J. and Bhargava, R. N., Appl. Phys. Lett. 40, 345 (1982).Google Scholar
[15] Yasuda, T., Jin, M., Merz, J. L. and Gaines, J., Proceedings of the 178 th Electrochemical Society Meeting State-of-the-Art Program on Compound Semiconductors (SOTAPOCSXIII), Seattle, 1990 (in press).Google Scholar
[16] Olego, D. J., Petruzzello, J., Shahzad, K., Khan, B. and Cammack, D. A. (Private communication).Google Scholar
[17] Merz, J. L., Nassau, K. and Shiever, J. W., Phys. Rev., B, 8, 1444 (1973).Google Scholar
[18] Tews, H., Venghaus, H. and Dean, P.J., Phys. Rev., B, 19, 5178 (1979).Google Scholar
[19] Dean, P. J., Herbert, D. C., Werkhoven, C. J., Fitzpatrick, B. J. and Bhargava, R. N., Phys. Rev. B, 23, 4888 (1981).Google Scholar
[20] Jiang, X. J., Hisamune, T., Nozue, Y. and Goto, T., Phys. Soc. Japan 52, 4008 (1983).Google Scholar