Hostname: page-component-8448b6f56d-wq2xx Total loading time: 0 Render date: 2024-04-25T06:52:01.438Z Has data issue: false hasContentIssue false

Proton Beam Texturing of Superconducting YBaCuO Ceramics

Published online by Cambridge University Press:  18 March 2011

Makhmud Kalanov
Affiliation:
Inst of Nuclear Physics, Ulugbek, 702132, Tashkent, UZBEKISTAN
Elvira M. Ibragimova
Affiliation:
Inst of Nuclear Physics, Ulugbek, 702132, Tashkent, UZBEKISTAN., E-mail: eibragim@suninp.tashkent.su
Get access

Abstract

Resistive superconducting (SC) transition, current-voltage characteristics, and X-ray diffraction (XRD) of YBaCuO ceramics have been studied after exposure to 18 MeV proton beam at 300 K. In the interval of 1013 −5×1014 cm−2 the irradiation induced oxygenation of weak intergrain contacts and grain alignment, anisotropy and broadening of SC-transition measured along and across the proton beam, and residual magnetization were found. The proton induced anisotropic texture is responsible for the critical current increase at 77 K and the resistivity decrease at 90–200 K. In a higher dose interval of 1013 −1015 cm−2 the SC-transition parameters degrade and the resistivity increases, depending on a texture degree, weak intergrain links become deoxygenated and no texture occurs. The magnetization (pinning) and the anisotropy of SC-transition can be due to localization of charges at the proton induced defects (mostly in oxygen sublattices).

Type
Research Article
Copyright
Copyright © Materials Research Society 2001

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

[1] Murakami, K., Morita, M., Doi, K., Miyamoto, K., Japan J. Appl. Phys. 28, 112 (1989)Google Scholar
[2] Ibragimova, E.M., Gasanov, E.M., Kalanov, M.O., Kirk, M.A. and Goretta, K.C., MRS Proc. 354, 723 (1995); M.S. Paizullakhanov, M.O. Kalanov, M. Karimov, R. Maminov and M.S. Yunusov, Superconductivity: Phys. Chem. Techn. 5 (11) 2048 (1992).Google Scholar
[3] Weber, H.W. and Crabtree, G.W., in: Studies of High Temperature Superconductors 9 (1991),Google Scholar
[4] Wang, G.H. and Pang, G.O., Phys. Lett A 130, 495 (1988).Google Scholar
[5] Yokota, K., Kura, T., Katayama, S., Chayahara, A., Satho, M., NIMB 59/60, 1431 (1991)Google Scholar
[6] Cevalle, I., Marwick, A.D., Elfresh, M.W. Mc, Worthington, T.K., Malozemoff, A.P., Holtzberg, F.H. and Kirk, M.A., Phys. Rev. Lett. 65, 1164 (1991).Google Scholar
[7] Weaver, B.D., Jackson, E.M., Summers, G.P., Chrisey, D.B., Horwitz, J.S., Pond, J.M., Newman, H.S. and Burke, E.A., IEEE: Trans. Nucl. Sci. 38, 1284 (1991).Google Scholar
[8] Willis, J.O. et al. , Appl. Phys. Lett. 53, 417 (1988).Google Scholar
[9] Vlcek, B.M., Viswanathan, H.K., Frischhertz, M.C., Fleshler, S., Vandervoort, K., Downey, J., Welp, U., Kirk, M.A. and Crabtree, G.W., Phys. Rev. B 48, 4067 (1993).Google Scholar
[10] Kirk, M.A., Cryogenics 33, 135 (1993).Google Scholar
[11] Frischhertz, M.C., Kirk, M.A., Zhang, J.P. and Weber, H.W., Phil. Mag. A 67, 1347 (1993), Physica C 232, 309 (1994).Google Scholar
[12] Stoneham, A.M., Nucl. Instr. Meth. Phys. Res. A 91, 1 (1994).Google Scholar