Hostname: page-component-8448b6f56d-42gr6 Total loading time: 0 Render date: 2024-04-23T15:42:27.726Z Has data issue: false hasContentIssue false

Properties Of SiC Film As X-Ray Mask Membrane

Published online by Cambridge University Press:  15 February 2011

Yoh-Ichi Yamaguchi
Affiliation:
Materials Research Laboratory, HOYA Corporation, Akishima-shi, Tokyo, Japan
Norimichi Annaka
Affiliation:
Electronics Division, HOYA Corporation, Nagasaka-cho, Yamanashi, Japan
Tsutomu Shoki
Affiliation:
Materials Research Laboratory, HOYA Corporation, Akishima-shi, Tokyo, Japan
Isao Amemiya
Affiliation:
Electronics Division, HOYA Corporation, Nagasaka-cho, Yamanashi, Japan
Hiroyuki Nagasawa
Affiliation:
Materials Research Laboratory, HOYA Corporation, Akishima-shi, Tokyo, Japan
Hiroyuki Kosuga
Affiliation:
Materials Research Laboratory, HOYA Corporation, Akishima-shi, Tokyo, Japan
Osamu Nagarekawa
Affiliation:
Electronics Division, HOYA Corporation, Nagasaka-cho, Yamanashi, Japan
Get access

Abstract

Many properties of LPCVD SiC film as X-ray mask membrane have been investigated in detail. The film has an atomic ratio of 1.0 and negligible impurities, and was found to be damage-free to SR X-rays up to 500 KJ/cm2. An integrated transparency of 1.05 μm thick SiC membrane for SR X-rays was measured to be 76%. The interference peak at 633 nm of optical spectrum has given the membrane of around 1.0 μm in thickness the transmittance peak of 70% and increased to more than 80% after an AR coating or planarizations by polishing and etching-back. The attainable transmittance was found to be limited to about 84%, theoretically and experimentally, due to the absorption of the membrane. The peak transmittance of 87% is obtainable by the AR coating on the polished SiC membrane. The internal stress was found to be independent of thicknesses above 0.6 μm and the measured Young's modulus is 4.5×1011 Pa irrespective of the thickness and stress. Some extremely polished (0.1 nm Ra) and all the etched-back membranes studied withstood breakage at the pressure as high as the as-deposited ones. The stress uniformity in 30 mm square of the membrane was found to be ± 10 % by measuring five local stresses with a bulge method.

Type
Research Article
Copyright
Copyright © Materials Research Society 1993

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. Bruenger, W.H., Betz, H., Heuberger, A. and Muller, K.P., J.Vac.Sci.Technol., B3, 237 (1985).Google Scholar
2. Sekimoto, M., Yoshihara, H. and Ohkubo, T., J. Vac. Sci. Technol., 21, 1017 (1982).Google Scholar
3. Kumar, R., Ohta, T., Yamashita, Y., Hoga, H. and Koga, K., Jpn. J. Appl. Phys., 31, 4195 (1992).Google Scholar
4. Yamada, M., Kondo, K., Nakaishi, M., Kudo, J. and Sugishita, K., J. Electrochem. Soc., 137, 2231 (1990).Google Scholar
5. Murooka, K., Itoh, M., Komano, H. and Gomei, Y., Jpn. J. Appl. Phys., 30, 3074 (1991).Google Scholar
6. Kobayashi, M., Sugawara, M., Yamashiro, K. and Yamaguchi, Y., Microelectronic Engineering, 11, 237 (1990).Google Scholar
7. Windischmann, H., Proc. SPIE, 1263, 241 (1990).Google Scholar
8. Suzuki, K., Kumar, R., Windischmann, H., Sano, H., limura, Y., Miyashita, H. and Watanabe, N., J. Vac. Sci. Technol., B9, 3266 (1991).Google Scholar
9. Lochel, B., Schliwinski, H.-J., Huber, H.-L., Trube, J., Schafer, L., Klages, C.-P. and Luthje, H., Microelectronic Engineering, 17, 175 (1992).Google Scholar
10. Marumoto, K., Yabe, H., Matsui, Y., Yamashita, H. and Kikuchi, N., Jpn. J. Appl. Phys., 31, 4205 (1992).Google Scholar
11. Wells, G.M., Palmer, S., Cerrina, F., Purdes, A. and Gnade, B., J. Vac. Sci. Technol., B8, 1575 (1990).CrossRefGoogle Scholar
12. Itoh, M., Hori, M., Komano, H. and Mori, I., J. Vac. Sci. Technol., B9, 3262 (1991).Google Scholar
13. Arakawa, T., Extended Abstracts (The 40th Spring Meeting, 1993); The Japan Society of Applied Physics and Related Societies, p.1375 (in Japanese).Google Scholar
14. Seese, P.A., Cummings, K.D., Resnick, D.J., Wallace, J.P., Wells, G.M. and Yanof, A.W., Proc. SPIE, 1924 (1993), in press.Google Scholar
15. Yamashiro, K., Sugawara, M., Nagasawa, H. and Yamaguchi, Y., Jpn. J. Appl. Phys., 30, 3078 (1991).Google Scholar
16. Shoki, T., Nagasawa, H., Kosuga, H., Yamaguchi, Y., Annaka, N., Amemiya, I. and Nagarekawa, O., Proc. SPIE, 1924 (1993), in press.Google Scholar
17. Arakawa, T., Okuyama, H. and Y.Yamashita (private communication).Google Scholar
18. Johnson, W.A., Levy, R.A., Resnik, D.J., Saunders, T.E., Yanof, A.W., Betz, H., Huber, H. and Oertel, H., J. Vac. Sci. Techno., B5, 257 (1987).Google Scholar
19. Levy, R.A., Resnick, D.J., Frye, R.C., Yanof, A.W., Wells, G.M. and Cerrina, F., J. Vac. Sci. Technol., B6, 154 (1988).Google Scholar
20. King, P.L., Pan, L., Pianetta, P., Shimkunas, A., Mauger, P. and Seligson, D., J. Vac. Sci. Technol., B6, 162 (1988).Google Scholar
21. Wells, G.M., Yamazaki, K. and Cerrina, F. (private communication).Google Scholar
22. Wells, G.M., Taylor, J.W., Cerrina, F., Pearson, D. and MacKay, J., J. Vac. Sci. Technol., B10, 3252 (1992).Google Scholar
23. Swanepoel, R., J. Phys. E: Sci. Instrum., 17, 896 (1984).CrossRefGoogle Scholar
24. Ito, M., Sugihara, S., Murooka, K. and Gomei, Y., Extended Abstracts (The 39th Spring Meeting, 1992); The Japan Society of Applied Physics and Related Societies, p.522 (in Japanese).Google Scholar