Hostname: page-component-8448b6f56d-wq2xx Total loading time: 0 Render date: 2024-04-18T17:50:36.489Z Has data issue: false hasContentIssue false

The Properties of GaInAsSb/GaSb Heterostructure Grown by Mocvd and P-GaInAsSb/N-GaSb Photodiodes

Published online by Cambridge University Press:  10 February 2011

Baolin Zhang
Affiliation:
Changchun Institute of Physics, Chinese Academy of Sciences, Changchun 130021, People's Republic of China
Yixin Jin
Affiliation:
Changchun Institute of Physics, Chinese Academy of Sciences, Changchun 130021, People's Republic of China
Tianming Zhou
Affiliation:
Changchun Institute of Physics, Chinese Academy of Sciences, Changchun 130021, People's Republic of China
Hong Jiang
Affiliation:
Changchun Institute of Physics, Chinese Academy of Sciences, Changchun 130021, People's Republic of China
Yongqiang Ning
Affiliation:
Changchun Institute of Physics, Chinese Academy of Sciences, Changchun 130021, People's Republic of China
Shuwei Li
Affiliation:
Changchun Institute of Physics, Chinese Academy of Sciences, Changchun 130021, People's Republic of China
Get access

Abstract

GaInAsSb/GaSb heterostructures have been grown by metalorganic chemical vapor deposition (MOCVD). The optical properties were characterized using low temperature(71K) photoluminescence(PL) and infrared transmission spectroscopy. The FWHM of the typical PL spectrum peaked at 2.3μm is 30meV. Hall measurement results for undoped GaInAsSb layers are presented showing a p-type background and low hole concentration of 6.5 × 1015cm−3. The room temperature performances of the p-GaInAsSb/n-GaSb photodiodes are reported. Its responsivity spectrum is peaked at 2.2 5μm and cuts off at 1.7μm in the short wavelength and at 2.4μm in the long wavelength, respectively. The room temperature detectivity D* is of 1 × 109cm.Hz1/2.W−2

Type
Research Article
Copyright
Copyright © Materials Research Society 1996

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. France, B.W., Carter, S.F., Moore, M.W. and Williams, J.R., SPIE 618, 51(1986).Google Scholar
2. Bhan, J., Joullie, A., Mani, H., Joullie, A.M. and Alibert, C., SPIE 866, 126(1987).Google Scholar
3. Zyskind, J.L., Dewinter, J.C., Burrus, C.A., Centanni, J.C., Dentai, A.G. and Pollack, M.A. Electron. Lett. 25, 558(1989).Google Scholar
4. Srivastava, A.K., Dewinter, J.C., Caneau, C., Pollack, M.A. and Zyskind, J.L., Appl. Phys. Lett. 48, 903(1986).Google Scholar
5. Benoit, J., Boulou, M., Soulage, G., Joullie, A. and Mani, H., J. Qpt. Commun. 9, 55(1988).Google Scholar
6. Nakajima, K., Osamura, K., Yasuda, K. and Murakami, Y., J. Cryst. Growth, 41, 87(1977).Google Scholar
7. Kobayashi, N. and Horikoshi, Y., Jap. J. Appl. Phys. 18, 2169(1979).Google Scholar
8. Dewinter, J.C., Pollack, M.A., Suvastava, A.K. and Zyskind, J.L., J. Cryst. Growth, 14, 729 (1985).Google Scholar
9. Wu, Meng-Chyi, Chen, Chi-Ching and Lee, Ching-Ting, Solid State Electron. 35, 523(1992).Google Scholar
10. Tsang, W.T., Chiu, T.H., Kisker, D.W. and Ditzenberger, J.A., Appl. Phys. Lett. 46, 283 (1985).Google Scholar
11. Chemg, M.J., Jen, H.R., Larsen, C.A. and Stringfellow, G.B., J. Cryst. Growth, 77, 408 (1986).Google Scholar
12. Bougnot, G., Delannoy, F., Foucaran, A., Pascal, F., Roumaiille, F., Grosse, P. and Bougnot, J., J. Electrochem. Soc. 135, 1783(1988).Google Scholar
13. Jaw, D.H., Jou, M.J., Fang, Z.M., and Stringfellow, G.B., J. Appl. Phys. 68, 3538(1990).Google Scholar
14. Klick, C.C. and Schulman, J.H., Solid State Phys. 5, 100(1957).Google Scholar
15. Lee, T.P., Burrus, C.A., Ogawa, K., Dentai, A.G., Electron. Lett. 17, 431(1981).Google Scholar