Hostname: page-component-848d4c4894-r5zm4 Total loading time: 0 Render date: 2024-06-26T23:32:52.318Z Has data issue: false hasContentIssue false

Processing of Inorganic-Organic Hybrids From Metal Alkoxides and Phenyltriethoxysilane

Published online by Cambridge University Press:  10 February 2011

Ikuko Yoshinaga
Affiliation:
Nippon Steel Corporation, Advanced Technology Research Laboratories, 3-35-1 Ida, Nakahara-ku, Kawasaki 211-0035, JAPAN, ikko@labl.nsc.co.jp
Noriko Yamada
Affiliation:
Nippon Steel Corporation, Advanced Technology Research Laboratories, 3-35-1 Ida, Nakahara-ku, Kawasaki 211-0035, JAPAN, ikko@labl.nsc.co.jp
Shingo Katayama
Affiliation:
Nippon Steel Corporation, Advanced Technology Research Laboratories, 3-35-1 Ida, Nakahara-ku, Kawasaki 211-0035, JAPAN, ikko@labl.nsc.co.jp
B. Claflin
Affiliation:
Nippon Steel Corporation, Advanced Technology Research Laboratories, 3-35-1 Ida, Nakahara-ku, Kawasaki 211-0035, JAPAN, ikko@labl.nsc.co.jp
G. Lucovsky
Affiliation:
Nippon Steel Corporation, Advanced Technology Research Laboratories, 3-35-1 Ida, Nakahara-ku, Kawasaki 211-0035, JAPAN, ikko@labl.nsc.co.jp
Get access

Abstract

In the synthesis of inorganic-organic hybrids from metal alkoxides and phenyltriethoxysilane (PTES), metal alkoxides were found to influence the phenyl siloxane network formation. The presence of metal alkoxides in the initial stage of hydrolysis and condensation of PTES promote the formation of phenyl siloxane networks to provide a dense hybrid. However, the presence of metal alkoxides in the stage of hydrolyzed PTES provide a loose structure of phenyl siloxane networks involving a number of silanol groups.

Type
Research Article
Copyright
Copyright © Materials Research Society 1998

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1 Schmidt, H. in Better Ceramics Through Chemistry I, edited by Brinker, C. J., Clark, D. E., and Ulrich, D. R. (Mater. Res. Soc. Proc. 32, North Holland, New York, 1984), p. 327.Google Scholar
2 Wilkes, G. L., Orler, B., and Hung, H., Polym. Prepr. (Am. Chem. Soc. Div. Polym. Chem.), 26, 300 (1985).Google Scholar
3 Novak, B. M., Adv. Mater. 5, 422 (1993).10.1002/adma.19930050603Google Scholar
4 Sanchez, C. and Ribot, F., New J. Chem. 18, 1007 (1994).Google Scholar
5 Katayama, S., Yoshinaga, I., and Yamada, N. in Better Ceramics Through Chemistry VII, edited by B. Coltrain, K., Sanchez, C., Schaefer, D. W. and Wiles, G. L. (Mater. Res. Soc. Proc. 435, Pittsburgh, PA, 1996), p. 321.Google Scholar
6 Yamada, N., Yoshinaga, I., and Katayama, S., J. Mater. Chem. 7(8), 1491 (1997).10.1039/a700793kGoogle Scholar
7 Katayama, S., Yoshinaga, I., and Yamada, N., Proc. SPIE, 3136, 134 (1997)10.1117/12.284143Google Scholar
8 Yoshinaga, I. and Katayama, S., J. Sol-Gel Sci. Tech. 6, 151 (1996).10.1007/BF00425972Google Scholar
9 Yoshinaga, I., Yamada, N., and Katayama, S. in Better Ceramics Through Chemistry VII, edited by Coltrain, B. K., Sanchez, C., Schaefer, D. W. and Wiles, G. L. (Mater. Res. Soc. Proc. 435, Pittsburgh, PA, 1996), p. 481.Google Scholar
10 Sugahara, Y., Inoue, T., and Kuroda, K., J. Mater. Chem. 7(1), 53 (1997)10.1039/a603741kGoogle Scholar
11 Brinker, C. Jeffrey and Sherer, Geoge W., Sol-gel science, Academic Press 1990.Google Scholar
12 Ueyama, A., Yamamoto, S., Adachi, H., and Karino, I., 67, 246 (1992).Google Scholar
13 Frahrenhotz, W. G., Smith, D. M., and Hua, D-W., J. Non-Cryst. Solid, 144, 45 (1992).10.1016/S0022-3093(05)80381-3Google Scholar
14 Belot, V., Corriu, R., Leclercq, D., Lefevre, P., Mutin, P. H., Vioux, A., and Flanck, A. M., Chemical Processing of Advanced Materials, edited by Hench, Larry L. and West, Jon K. (John Wiley and Sons, Inc. 1992) pp.143158.Google Scholar
15 Sanchez, C. and Ribot, F., New J. Chem. 18, 1007 (1994).Google Scholar