Hostname: page-component-78c5997874-t5tsf Total loading time: 0 Render date: 2024-11-19T09:27:52.402Z Has data issue: false hasContentIssue false

Prism-Film Coupling in Anisotropic Planar Waveguides of Epitaxial (101) Rutile Thin Films

Published online by Cambridge University Press:  21 February 2011

C. M. Foster
Affiliation:
Materials Science Division, Argonne National Laboratory, 9700 S. Cass Avenue, Argonne, IL 60439
S.-K. Chan
Affiliation:
Materials Science Division, Argonne National Laboratory, 9700 S. Cass Avenue, Argonne, IL 60439
H.L.M. Chang
Affiliation:
Materials Science Division, Argonne National Laboratory, 9700 S. Cass Avenue, Argonne, IL 60439
R. P. Chiarello
Affiliation:
Materials Science Division, Argonne National Laboratory, 9700 S. Cass Avenue, Argonne, IL 60439
D. J. Lam
Affiliation:
Materials Science Division, Argonne National Laboratory, 9700 S. Cass Avenue, Argonne, IL 60439
Get access

Abstract

We report optical waveguiding in single-crystal, epitaxial (101) oriented rutile (TiO2) thin films grown on (1120) sapphire (α-Al2O3) substrates using the MOCVD technique. The propagation constants for asymmetric planar waveguides composed of an anisotropic dielectric media applicable to these films are derived. Modifications to the prism-film coupling theory for this anisotropic case are also discussed. By application of this model to (101) oriented rutile thin films, we directly obtain values of the ordinary and extraordinary refractive indexes, no and ne, of the rutile thin films as well as film thicknesses. We obtain typical values of the refractive indexes (no=2.5701±0.0005; ne=2.934±0.001) near to those for bulk rutile single crystals indicating the exceptional quality of these films.

Type
Research Article
Copyright
Copyright © Materials Research Society 1993

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. Marcuse, D., Theory of Dielectric Optical Waveguides (Academic Press, New York, 1974); N. S. Kapany and J. J. Burke, Optical Waveguides (Academic Press, New York, 1972)Google Scholar
2. Gao, Y., Merkle, K. L., Chang, H. L. M., Zhang, T. J., and Lam, D. J., J. Mater. Res. 6, 2417 (1991); Y. Gao, K. L. Merkle, H. L. M. Chang, T. J. Zhang, and D. J. Lam, Phil. Mag. A 65, 1103 (1992).CrossRefGoogle Scholar
3. Chang, H. L. M., You, H., Gao, Y., Guo, J., Foster, C. M., Chiarello, R. P., Zhang, T. J., and Lam, D. J., J. Mater. Res. 7, 2495 (1992).Google Scholar
4. Tien, P. K., Ulrich, R., and Martin, R. J., Appl. Phys. Lett. 17, 447 (1970); K. Tanaka and A. Odajima, Appl. Phys. Lett. 38, 481 (1981). C. Liao and G. I. Stegeman, Appl. Phys. Lett. 44, 164 (1984); S. S. Thöny and H. W. Lehmann, Appl. Phys. Lett. 61, 373 (1992).CrossRefGoogle Scholar
5. Tien, P. K. and Ulrich, R., J. Opt. Soc. Am. 60, 1325 (1970).CrossRefGoogle Scholar
6. Midwinter, J. E., IEEE J. Quant. Elec. QE–6, 583 (1970); R. Ulrich, J. Opt. Soc. Am. 60, 1337 (1970); P. K. Tien, Appl. Opt. 10, 2395 (1971); R. Ulrich and R. Torge, Appl. Opt. 12, 2901 (1973); H. Kogelnik and H. P Weber, J. Opt. Soc. Am. 64, 174 (1974).CrossRefGoogle Scholar
7. Russo, D. P Gia and Harris, J. H., J. Opt. Soc. Amer. 63, 138 (1973); M. O. Vassell, J. Opt. Soc. Am. 64, 166 (1974).CrossRefGoogle Scholar
8. Nelson, D. F. and McKenna, J., J. Appl. Phys. 38, 4057 (1967).Google Scholar
9. Leclerc, G. and Yelon, A., Appl. Opt. 23, 2760 (1984); S. Yamamoto, K. Shibata and T. Malimoto, Opt. Comm. 31, 139 (1979); R. A. Andrews, IEEE J. Quant. Elec. QE-7, 523 (1971); IEEE J. Quant. Elec. QE-8, 27 (1972).CrossRefGoogle Scholar
10. Foster, C. M., Chan, S.-K., Chang, H. L. M., Chiarello, R. P., Zhang, T. J., Guo, J., and Lamn, D. J., J. Appl. Phys. 73 (10), 1 (1993).Google Scholar
11. Bennett, J. M. and Glassman, A. T., in Handbook of Laser Science and Technology Vol. 4. Optical Materials: Part 2, Ed. by Weber, M. J., (CRC Press, Inc., Boca Raton, FL, 1988).Google Scholar