Hostname: page-component-76fb5796d-dfsvx Total loading time: 0 Render date: 2024-04-27T01:10:00.704Z Has data issue: false hasContentIssue false

Preparation of PbZrxTi1−xO3 Films on Si Substrates Using SrTiO3 Buffer Layers

Published online by Cambridge University Press:  15 February 2011

Eisuke Tokumitsu
Affiliation:
Precision & Intelligence Laboratory, Tokyo Institute of Technology, 4259 Nagatsuta, Midori-ku, Yokohama 226, Japan
Kensuke Itani
Affiliation:
Precision & Intelligence Laboratory, Tokyo Institute of Technology, 4259 Nagatsuta, Midori-ku, Yokohama 226, Japan
Bum-Ki Moon
Affiliation:
Precision & Intelligence Laboratory, Tokyo Institute of Technology, 4259 Nagatsuta, Midori-ku, Yokohama 226, Japan
Hiroshi Ishiwara
Affiliation:
Precision & Intelligence Laboratory, Tokyo Institute of Technology, 4259 Nagatsuta, Midori-ku, Yokohama 226, Japan
Get access

Abstract

We report the preparation of PbZrxTi1−xO3 (PZT) films on Si substrates with a SrTiO3 (STO) buffer layer. STO buffer layers and PZT films were formed on Si substrates by the electron-beam assisted vacuum evaporation technique and sol-gel technique, respectively. By evaporating a thin (8nm) metal Sr layer prior to the STO deposition, which deoxidizes the SiO2 layer at the Si surface, (100)- and (111)-oriented STO thin films can be grown on Si(100) and (111) substrates, respectively. It is shown that a strongly (100)-oriented PZT film is grown on STO(100)/Si(100), whereas a strongly (111)-oriented PZT film is obtained on STO(111)/Si(111). It is also found that the STO buffer layer remains intact even after the PZT deposition. Secondary ion mass spectrometry (SIMS) analysis showed that the STO barrier layer was effective in preventing diffusion of Pb into the Si substrate.

Type
Research Article
Copyright
Copyright © Materials Research Society 1995

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Scott, J.F. and Araujo, C.A., Sience 246 1400 (1989)Google Scholar
2. Taylor, D.J., Larsen, P.K., and Cuppens, R.: Appl. Phys. Lett. 64 1392 (1994)Google Scholar
3. Ishiwara, H., Jpn. J. Appl. Phys. 32 442 (1993)Google Scholar
4. Okamura, T., Adachi, M., Shiosaki, T. and Kawabata, A., Jpn. J. Appl. Phys. 30 1034 (1991)Google Scholar
5. Ramesh, R., Inam, A., Chan, W. K., Tillerot, T., Wilkens, B., Cang, C.C., Sands, T., Tarascon, J.M. and Keramidas, V.G., Appl. Phys. Lett. 59 3542 (1991)Google Scholar
6. Okuyama, M., Asano, J.,, Imai, T., Lee, D.H. and Hamakawa, Y., Jpn. J. Appl. Phys. 32 4107 (1993)Google Scholar
7. Shichi, Y., Tanimoto, S., Goto, T., Kuroiwa, K., Tarui, Y., Jpn. J. Appl. Phys. 33 5172 (1994)Google Scholar
8. Moon, B.K. and Ishwara, H., Mat. Res. Soc. Symp. Proc. Vol. 341, 113 (1994)Google Scholar
9. Moon, B.K. and Ishwara, H., Jpn. J. Appl. Phys. 33 1472 (1994)Google Scholar
10. Moon, B.K. and Ishwara, H., Jpn. J. Appl. Phys. 33 5911 (1994)Google Scholar
11. Tokumitsu, E., Tanisake, N. and Ishiwara, H., Jpn. J. Appl. Phys. 33 5201 (1994)Google Scholar