Hostname: page-component-8448b6f56d-gtxcr Total loading time: 0 Render date: 2024-04-25T05:43:25.138Z Has data issue: false hasContentIssue false

Preparation of NiNb2O6 Columbite Ceramics by a Reaction-Sintering Process

Published online by Cambridge University Press:  01 February 2011

Yi-Cheng Liou
Affiliation:
Department of Electronic Engineering, Kun-Shan University of Technology, Tainan Hsien 710, Taiwan, R.O.C.
Chao-Yang Shiue
Affiliation:
Department of Electronic Engineering, Kun-Shan University of Technology, Tainan Hsien 710, Taiwan, R.O.C.
Get access

Abstract

Preparation of NiNb2O6 columbite ceramics by a reaction-sintering process has been investigated. The mixture of raw materials was pressed and sintered into ceramics without any calcination stage involved. Columbite NiNb2O6 ceramics were obtained after being sintered at 1250–1450°C for 2 h and 4 h from mixture of Nb2O5 and 50%Ni(NO3)2-50%NiO (NN1). In pellets from mixture of Nb2O5 and NiO (NN2), columbite NiNb2O6 ceramics were obtained after being sintered at 1150–1350°C for 2 h and 4 h. A density of 4.47 g/cm3 was obtained in NN1 for 2 h sintering at 1400°C. For NN2, a higher density 5.62 g/cm3 (99.8% of the theoretical value) was obtained for 2 h sintering at 1300°C. The reaction-sintering process has proven to be a simple and effective method in preparing columbite NiNb2O6 ceramics. A higher density could be obtained at lower sintering temperature by using NiO instead of 50%Ni(NO3)2-50%NiO in the reaction with Nb2O5.

Type
Research Article
Copyright
Copyright © Materials Research Society 2005

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Akbas, M. A., Davies, P. K., J. Am. Ceram. Soc. 81 (3), 670 (1998).Google Scholar
2. Ferrari, C. R., Hernandes, A. C., J. Eur. Ceram. Soc. 22, 2101 (2002).Google Scholar
3. Kawashima, S., Nishida, M., Ueda, I., Ouchi, H., J. Am. Ceram. Soc. 66(6), 233 (1983).Google Scholar
4. Matsumoto, K., Hiuga, T., Takada, K., Ichimura, H., IEEE Trans. Ultrason. Ferroelec. Freq. Contr. 33(6), 802 (1986).Google Scholar
5. Meada, M., Yamamura, T., Ikeda, T., Jpn. J. Appl. Phys. Supp. 26–2, 76 (1987).Google Scholar
6. Lee, H. J., Kim, I. T., Hong, K. S., Jpn. J. Appl. Phys. 36 part2(10A), 1318 (1997).Google Scholar
7. Lee, H. J., Hong, K. J., Kim, S. J., Kim, I. T., Mater. Res. Bull. 32(7), 847 (1997).Google Scholar
8. Hsu, C. S., Huang, C. L., Tseng, J. F., Huang, C. Y., Mater. Res. Bull. 38, 1091 (2003).Google Scholar
9. Kong, L. B., Ma, J., Huang, H., Zhang, R. F., Zhang, T. S., J. Alloys and Comp. 347, 308 (2002).Google Scholar
10. Kong, L. B., Ma, J., Huang, H., Zhang, R. F., J. Alloys and Comp. 340, L1 (2002).Google Scholar
11. Gomez-Yanez, C., Benitez, C., Balmori-Ramirez, H., Ceram. Int. 26, 271 (2000).Google Scholar
12. Kong, L. B., Ma, J., Huang, H., Zhang, R. F., Que, W. X., J. Alloys and Comp. 337, 226 (2002).Google Scholar
13. Lee, S. E., Xue, J. M., Wan, D. W., Wang, J., J. Acta Mater. 47(9), 2633 (1999).Google Scholar
14. Hamada, K., Senna, M., J. Mater. Sci. 31, 1725 (1996).Google Scholar
15. Wang, J., Wan, D. W., Xue, J. M., Ng, W. B., Singapore Patent No. 9801566–2, 1998.Google Scholar
16. Kong, L. B., Ma, J., Mater. Lett. 51, 95 (2001).Google Scholar
17. Liou, Y. C., Tseng, K. H., Yu, C. H., Proceedings of the 2001 annual Conference of the Chinese Society for Materials Science, 23–24 November 2001, National Chung Hsing University, Taichung, Taiwan, P0309.Google Scholar
18. Liou, Y. C., Tseng, K. H., Yu, C. H., Proceedings of the 2001 annual Conference of the Chinese Society for Materials Science, 23–24 November 2001, National Chung Hsing University, Taichung, Taiwan, P0317.Google Scholar
19. Liou, Y. C., Shih, C. Y., Yu, C. H., Proceedings of the 2001 annual Conference of the Chinese Society for Materials Science, 23–24 November 2001, National Chung Hsing University, Taichung, Taiwan, P03102.Google Scholar