Hostname: page-component-8448b6f56d-wq2xx Total loading time: 0 Render date: 2024-04-16T20:02:52.768Z Has data issue: false hasContentIssue false

Preparation of Hydrogen Passivated Silicon for UHV-CVD Low Temperature Epitaxy

Published online by Cambridge University Press:  21 February 2011

Susan L. Cohen*
Affiliation:
IBM T.J. Watson Research Center, P.O. Box 218, Yorktown Heights, NY 10598
Get access

Abstract

A critical step for successful growth of ultra-high vacuum chemical vapor deposition (UHV-CVD) epitaxial silicon films at low temperatures is the preparation and maintenance of a hydrogen passivated surface. A final 10:1 HF dip has been shown to provide a robust and extremely clean substrate for this purpose; interfacial oxygen and carbon levels of less than 1 × 1013 atoms/cm2 and low levels of structural defects are routinely observed after epitaxial growth. In this work, our understanding of the Si (100) hydrogen passivated surface is reviewed with emphasis on its stability to air and moisture exposure. Additionally, in an effort to reduce interfacial contamination levels even further and explore clusterable processes, other precleaning chemistries such as high pH NH4F and vapor HF have also been evaluated. While surface analysis measurements suggest that the NH4F preparation should be as good or better than the HF dip, the epitaxial film defect density is higher by several orders of magnitude than for the dilute HF preparation. The vapor HF process, while potentially clusterable and therefore desireable, has generally not provided hydrogen passivated surfaces that are clean enough for this application.

Type
Research Article
Copyright
Copyright © Materials Research Society 1993

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1 Sedgwick, T. O., Berkenblit, M. and Kuan, T. S., Appl. Phys. Lett. 54, 2689 (1989).Google Scholar
2 Sedgwick, T. O. and Agnello, P. D., J. Vac. Sci. Technol. A 10, 1913 (1992).Google Scholar
3 Racanelli, M. and Greve, D. W., Appl. Phys. Lett. 58, 2096 (1991).Google Scholar
4 Ramm, I., Beck, E., Steiner, F., Pixley, R. E. and Eisele, I., Chemical Surface Preparation, Passivation and Cleaning for Semiconductor Growth and Processing (Mat. Res. Soc., 1992), p. 249.Google Scholar
5 Meyerson, B. S., Himpsel, F. J. and Uram, K. J., Appl. Phys. Lett. 57, 1034 (1990).CrossRefGoogle Scholar
6 Meyerson, B. S., Chemical Vapor Deposition (Academic Press Ltd., 1993), p. Chapter 5.Google Scholar
7 Patton, G. L., Comfort, J. H., Meyerson, B. S., Crabbe, E. F., Scilla, G. J., DeFresart, E., Stork, J. M., Sun, J. Y., Harame, D. L. and Burghartz, J., Electron. Dev. Lett. 11, 171 (1990).Google Scholar
8 Meyerson, B. S., Proceedings of the IEEE 80 (10), 1592 (1992).Google Scholar
9 D'Emic, C. P., Blum, J. M., Cohen, S. L., Baseman, R. J., Gilbert, M., Cardone, F., Stanis, C., Rothman, L., M. Hill and Krussell, W., Chemical Surface Preparation, Passivation and Cleaning for Semiconductor Growth and Processing (Mat. Res. Soc., 1992), p. 479.Google Scholar
10 Cohen, S. L., Blum, J. M., DEmic, C. P., Gilbert, M., Cardone, F., Stanis, C. and Liehr, M., Chemical Surface Preparation, Passivation and Cleaning for Semiconductor Growth and Processing (Mat. Res. Soc., 1992), p. 499.Google Scholar
11 Tejwani, M. J. and Ronsheim, P. A., Chemical Surface Preparation, Passivation and Cleaning for Semiconductor Growth and Processing (Mat. Res. Soc., 1992), p. 467.Google Scholar
12 Dumas, P. and Chabal, Y. J., Chem. Phys. Lett. 181 (6), 537 (1991).Google Scholar
13 Liehr, M., Greenlief, C. M., Kasi, S. R. and Offenberg, M., Appl. Phys. Lett. 56, 629 (1990).Google Scholar
14 Kasi, S., Liehr, M., unpublished resultsGoogle Scholar
15 Sedgwick, T.O., Agnello, P.D., Grutzmacher, D.A. Paper submitted to Electrochemical Society, 1993.Google Scholar
16 Kern, W. W. and Puotinen, D. D. A., RCA Rev. 31, 187 (1970).Google Scholar
17 Kern, W. J., J. Electrochem. Soc. 137, 1887 (1990).Google Scholar
18 Liehr, M., J. Vac. Sci. Technol. A 8, 1939 (1990).Google Scholar
19 Kasi, S. R. and Liehr, M., Appl. Phys. Lett. 57, 2095 (1990).Google Scholar
20 Liehr, M. and Kasi, S. R., Extended Abstracts of the 1991 SSDM (Yokohama, 1991), p. 484.Google Scholar
21 Higashi, G. S., Chabal, Y. J., Trucks, G. W. and Raghavachari, K., Appl. Phys. Lett. 56(7), 656 (1990).Google Scholar
22 Dumas, P., Chabal, Y. J. and Higashi, G. S., Phys. Rev. Lett 65(9), 1124 (1990).Google Scholar
23 Higashi, G. S., Becker, R. S., Chabal, Y. J. and Becker, A. J., Appl. Phys. Lett. 58(15), 1657 (1991).Google Scholar
24 Chabal, Y. J., Chemical Surface Preparation, Passivation and Cleaning for Semiconductor Growth and Processing (Mat. Res. Soc., 1992), p. 349.Google Scholar
25 Li, Leping, Cohen, Susan, unpublished results.Google Scholar
26 Deal, B. E. and Helms, C. R., Chemical Surface Preparation, Passivation and Cleaning for Semiconductor Growth and Processing (Mat. Res. Soc., 1992), p. 361.Google Scholar
27 Nakano, M., Shinmura, N. and Iguchi, K., 1992 Symposium on VLSI Technology (IEEE, 1992), p. 16.Google Scholar
28 Jeng, S. J., Yu, C., Natzle, W., Chen, L., Gambino, J., and Chang, C. A., MRS 1992 Fall Meeting, Nov. 31-Dec. 4, Boston, MA. Google Scholar
29 Natzle, W., Yu, C., Jeng, S.J., Nov 1-15, 1991, Am. Vac. Soc., Seattle, WA Google Scholar