Hostname: page-component-8448b6f56d-jr42d Total loading time: 0 Render date: 2024-04-19T20:58:15.242Z Has data issue: false hasContentIssue false

Preparation of a New SrBi2Ta2O9 (SBT) Chemical Solution Using Crown Ether and its Thin Film Deposition

Published online by Cambridge University Press:  10 February 2011

Yo-Sep Min*
Affiliation:
Microelectronics Lab, Samsung Advanced Institute of Technology, P.O. Box 11, Suwon 440–600, Korea
June Key Lee
Affiliation:
Microelectronics Lab, Samsung Advanced Institute of Technology, P.O. Box 11, Suwon 440–600, Korea
In-Sook Lee
Affiliation:
Microelectronics Lab, Samsung Advanced Institute of Technology, P.O. Box 11, Suwon 440–600, Korea
*
a) Author to whom correspondence should be addressed. e-mail: ysmin@sait.samsung.co.kr
Get access

Abstract

A new chemical solution for the deposition of SrBi2Ta2O9 (SBT) thin films using crown ether is proposed. Crown ether enhances the solubility of bismuth acetate in acetic acid, which makes a solvent solution possible. A metal acetate-based SBT precursor solution was prepared in acetic acid using 18-crown-6, strontium acetate, bismuth acetate and tantalum ethoxide. (115)-preferentially oriented ferroelectric SBT thin films were formed on Pt/TiO2/SiO2/Si substrates by spin-coating with the new solution. After post-annealing at 800°C, a hysteresis loop obtained from a 2000Å thick SBT film with Pt electrodes showed a remanent polarization of ∼3μC/cm2 and a coercive voltage of ∼50kV/cm. It was shown from SIMS depth profiles that excess bismuth atoms in the SBT thin film diffused towards the Pt electrodes during post-annealing.

Type
Research Article
Copyright
Copyright © Materials Research Society 2000

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. Mihara, T., Watanabe, H. and Paz de Araujo, C. A., Jpn. J. Appl. Phys. 33, 5281 (1994).Google Scholar
2. Al-Shareef, H. N., Dimos, D., Boyle, T. J., Warren, W. L., and Tuttle, B. A., Appl. Phys. Lett. 68, 690 (1996).Google Scholar
3. Amanuma, K., Hase, T. and Miyasaka, Y., Appl. Phys. Lett. 66, 221 (1995).Google Scholar
4. Dat, R., Lee, J. K., Auciello, O. and Kingon, A. I., Appl. Phys. Lett. 67, 572 (1995).Google Scholar
5. A-Paz de Araujo, C., Cuchiaro, J. D., McMillan, L. D., Scott, M. C. and Scott, J. F., Nature 374, 627 (1995).Google Scholar
6. Im, J., Krauss, A. R., Dhote, A. M., Gruen, D. M., Auciello, O, Ramesh, R., and Chang, R. P. H., Appl. Phys. Lett. 72, 2529 (1998).Google Scholar
7. Zhu, Y., Desu, S. B., Li, T., Ramanathan, S. and Nagata, M., J. Mater. Res. 12, 783 (1997).Google Scholar
8. Seong, N. J., Yoon, S. G. and Lee, S. S., Appl. Phys. Lett. 71, 81 (1997).Google Scholar
9. Li, T., Zhu, Y., Desu, S. B., Peng, C. H. and Nagata, M., Appl. Phys. Lett. 68, 616 (1996).Google Scholar
10. Joshi, P. C., Ryu, S. O., Zhang, X. and Desu, S. B., Appl. Phys. Lett. 70. 1080 (1997).Google Scholar
11. Boyle, T. J., Buchheit, C. D., Rodriguez, M. A., Al-Shareef, H. N., Hernandez, B. A., Scott, B. and Ziller, J. W., J. Mater. Res. 11, 2274 (1996).Google Scholar
12. Watanabe, H., Mihara, T., Yoshimori, H. and Paz de Araujo, C. A., Jpn. J. Appl. Phys. 34, 5240 (1995).Google Scholar
13. Atsuki, T., Soyama, N., Yonezawa, T. and Ogi, K., Jpn. J. Appl. Phys. 34, 5096 (1995).Google Scholar
14. Ogata, N., Nagata, M., Ishihara, K., Urashima, H., Okutoh, A., Yamazaki, S., Mitarai, S. and Kudo, J., Jpn. J. Appl. Phys.. 37, 3481 (1998).Google Scholar
15. Amanuma, K., Hase, T. and Miyasaka, Y., Jpn. J. Appl. Phys. 66, 221 (1995).Google Scholar
16. Atsuki, T., Soyama, N., Yonezawa, T. and Ogi, K., Jpn. J. Appl. Phys. 34, 5096 (1995).Google Scholar
17. Koiwa, I, Kanehara, T., Mita, J., Iwabuchi, T., Osaka, T., Ono, S. and Maeda, M., Jpn. J. Appl. Phys. 35, 4946 (1996).Google Scholar
18. Troyanov, S. I. and Pisarevsky, A. P., Koord. Khim. 17, 909 (1991).Google Scholar