Hostname: page-component-848d4c4894-hfldf Total loading time: 0 Render date: 2024-05-08T04:33:10.464Z Has data issue: false hasContentIssue false

Preparation and Photoactive Characterization of Tube-shaped Al-doped ZnO Ceramics.

Published online by Cambridge University Press:  11 February 2011

Yoshinobu Fujishiro
Affiliation:
Synergy Materials Research Center, National Institute of Advanced Industrial Science and Technology (AIST), Joint Research Center for Advanced Technology, Shidami Human Science Park 2268–1, Shimo-shidami, Moriyama-ku, Nagoya, 463–8687, JAPAN. E-mail : y-fujishiro@aist.go.jp
M. Awano
Affiliation:
Synergy Materials Research Center, National Institute of Advanced Industrial Science and Technology (AIST), Joint Research Center for Advanced Technology, Shidami Human Science Park 2268–1, Shimo-shidami, Moriyama-ku, Nagoya, 463–8687, JAPAN. E-mail : y-fujishiro@aist.go.jp
S. Kanzaki
Affiliation:
Synergy Materials Research Center, National Institute of Advanced Industrial Science and Technology (AIST), Joint Research Center for Advanced Technology, Shidami Human Science Park 2268–1, Shimo-shidami, Moriyama-ku, Nagoya, 463–8687, JAPAN. E-mail : y-fujishiro@aist.go.jp
Get access

Abstruct:

Tubular Al-doped ZnO particles were prepared by homogeneous precipitation in the mixed solutions of Al(NO3)2, Zn(NO3)2, sodium dodecyl sulfate (SDS) surfactant and urea. At the molar ratio of Metal ions(Mt) : SDS : urea : H2O is 1 : 2 : 20 : 60, tubular products formed by heating at 80°C for 12 h. Plate like ZnO particles were obtained at Mt : SDS : urea : H2O = 1 : 2 : 10 : 60 or 1 : 1 : 20 : 60. The diameter of typical ZnO tube is ca.100 nm, and the length of tube is about 600nm (aspect ratio = 6). The relative surface area of tubular Al-doped ZnO is ca. 40.2 m2/g. The photo-decomposition rate of NO3- ions using tubular Al-doped ZnO particles was higher than standard TiO2 photo-catalysts (P-25) by irradiation >290nm light in 10mM KNO3-10vol%EtOH solutions at 30°C. The obtained materials showed DC conductive properties as compacted substrate by sintered at 400°C.

Type
Research Article
Copyright
Copyright © Materials Research Society 2003

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Ma, Y., Tong, W., Zhou, H., Suib, S.L., Microporous and Mesoporous Materials, 54, 37(2002).Google Scholar
2. Martin, C.R., Science, 266, 1961(1994).Google Scholar
3. Lieber, C.M., Solid State Commu., 107, 607(1998).Google Scholar
4. Martin, C.R., Chem. Mater., 8, 1739(1996).Google Scholar
5. Iijima, S., Nature, 354, 56(1991).Google Scholar
6. Kresgo, C.T., Lenowicz, M.E., Reth, W.J., Vartuli, J.C., Besk, J.S., Nature, 359, 710(1992).Google Scholar
7. Yada, M., Takenaka, H., Kijima, M., J. Chem, Soc., Dalton Trans., 1547(1998).Google Scholar
8. Yada, M., Kitamura, H., Machida, M., Kijima, T., Inorg. Chem., 37, 6470(1998).Google Scholar
9. Kasuga, T., Hiramatsu, M., Hosono, A., Sekino, T., Nihara, K., Langmuir, 14, 3160(1998).Google Scholar
10. Satishkumar, B.C., Govindaraj, A., Vogl, E.M., Basumallick, L., Rao, C.N.R., J. Mater. Res., 12, 604(1997).Google Scholar
11. Shi, X., Han, S., Sanedrin, R.J., Galvez, C., Ho, D.G., Hernandez, B., Zhou, F., Selke, M., Nanoletter, 2–4, 289(2002).Google Scholar
12. Dai, Z.R., Gole, J.L., Stout, J.P., Wang, Z.L., J. Phys. Chem. B, 106, 1274(2002).Google Scholar
13. Tsubota, T., Ohtaki, M., Eguchi, K. and Arai, H., J. Mater. Chem., 7, 85(1997).Google Scholar
14. Sekiguchi, T., Ohashi, N., Terada, Y., Jpn. Appl. Phys., 36. 289(1997).Google Scholar
15. Sato, Y., Sato, S., Thin Solid Films, 281, 445(1996).10.1016/0040-6090(96)08671-3Google Scholar
16. Puvvada, S., Blanckstein, D., J. Chem. Phys., 92, 3710(1990).Google Scholar
17. Tawkaew, S., Fujishiro, Y., Yin, S., Sato, T., Colloids and Surfaces A., 179, 139(2001).Google Scholar