Hostname: page-component-7c8c6479df-xxrs7 Total loading time: 0 Render date: 2024-03-28T17:24:53.570Z Has data issue: false hasContentIssue false

Precipitation of Oxygen and Mechanism of Stacking Fault Formation in Czochralski Silicon Bulk Crystals

Published online by Cambridge University Press:  15 February 2011

Kazumi Wada
Affiliation:
Musashino Electrical Communication Laboratory, Nippon Telegraph and Telephone Public Corporation, Musashino, Tokyo, 180 Japan
Naohisa Inoue
Affiliation:
Musashino Electrical Communication Laboratory, Nippon Telegraph and Telephone Public Corporation, Musashino, Tokyo, 180 Japan
Jiro Osaka
Affiliation:
Musashino Electrical Communication Laboratory, Nippon Telegraph and Telephone Public Corporation, Musashino, Tokyo, 180 Japan
Get access

Abstract

This paper describes recent progress on nucleation and growth of oxide precipitates and stacking faults in Czochralski silicon. Conclusions on the growth kinetics of oxide precipitates are drawn from the experiments and analysis of growth kinetics of two-dimensional precipitates: The experimentally obtained growth kinetics, three-quarter power law is theoretically derived and the precipitate growth is demonstrated to be diffusion-limited by oxygen interstitials. The formation mechanism of stacking faults is the Bardeen-Herring mechanism. Based on diffusional growth model, the growth kinetics of stacking faults are analyzed, assuming a coexistence of self-interstitial supersaturation and vacancy undersaturation. It is found that the growth is driven by vacancies in undersaturation. Vacancy component of self-diffusion has been determined and found to be predominant at low temperature. The possibility of growth model proposed for increase of oxide precipitate density during annealing has been excluded. Both processes, homogeneous and heterogeneous nucleation, have been taking place during annealing.

Type
Research Article
Copyright
Copyright © Materials Research Society 1982

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Tempelhoff, K., Spieglberg, F. and Gleichmann, R. in: Semiconductor Silicon 1977, Huff, H. R. and Sirtl, E., eds. (The Electrochemical Society, Princeton, 1977), p.585.Google Scholar
2. Maher, D. M., Staudinger, A. and Patel, J. R., J. Appl. Phys. 47, 3813 (1976).Google Scholar
3. Patel, J. R. in: Semiconductor Silicon 1981, Huff, H. R., Kriegler, R. J. and Takeishi, Y., eds. (The Electrochemical Society, Pennington, 1981), p.189.Google Scholar
4. Endo, Y., Yatsurugi, Y., Akiyama, N. and Nozaki, T., Analytical Chemistry 44, 2258 (1972).Google Scholar
5. Wada, K., Inoue, N. and Kohra, K., J. Cryst. Growth 49, 749 (1980).Google Scholar
6. Seidman, D. N. and Balluffi, R. W., Philos. Mag. 13, 649 (1964).Google Scholar
7. Flynn, C. P., Phys. Rev. 134, A241 (1964); 133, A587 (1964).Google Scholar
8. Buchholz, H., Electrische und Magnetische Potentialfelder (Springer-Verlag, Berlin, 1957), p. 233.Google Scholar
9. Hu, S. M. in: Defects in Semiconductors, Narayan, J. and Tan, T. Y. eds. (North Holland, New York, 1981), P.333.Google Scholar
10. Goesele, U. and Frank, W. in: Defects in Semiconductors, Narayan, J. and Tan, T. Y. eds. (North Holland, New York, 1981), p.55.Google Scholar
11. Yang, K. H., Kappert, H. F. and Schwuttke, G. H., Phys. Stat. Sol. A50, 221 (1978).Google Scholar
12. Kahlweit, M. in: Progre in Solid State Chemictry, Reiss, H. eds. (Pergamon Press, New York, 1965), p.134.Google Scholar
13. Craven, R. A. in: Semiconductor Silicon 1981, Huff, H. R., Kriegler, R. J. and Takeishi, Y., eds. (The Electrochemical Society, Pennington, 1981), p.254.Google Scholar
14. Matsushita, Y., J. Cryst. Growth 56, 516 (1982).Google Scholar
15. Hu, S. M., J. Appl. Phys. 45, 1567 (1974).Google Scholar
16. Wada, K., Takaoka, H., Inoue, N. and Kohra, K., Jpn. J. Appl. Phys. 18, 1629 (1979).Google Scholar
17. Iizuka, T., Jpn. J. Appl. Phys. 4, 1018 (1966).Google Scholar
18. Patel, J. R., Jackson, K. A. and Reiss, H., J. Appl. Phys. 48, 5279 (1977).Google Scholar
19. Takaoka, H., Osaka, J., and Inoue, N., Jpn. J. Appl. Phys. 18, Suppl. 18–1, 179 (1979).CrossRefGoogle Scholar
20. Wada, K., unpublished.Google Scholar
21. Leroy, B., J. Appl. Phys. 50, 1567 (1979).Google Scholar
22. Mizuo, S., and Higuchi, H., Jpn. J. Appl. Phys. 21, 281 (1982).Google Scholar
23. Wada, K. and Inoue, N. in: Defects and Radiation Effects in Semiconductors 1980, (Inst. Phys. Conf. Ser. 59)p.461 (1981).Google Scholar
24. Mizuo, S. and Higuchi, H., Jpn. J. Appl. Phys. 20, 739 (1981).CrossRefGoogle Scholar
25. Mayer, H. J., Mehrer, H. and Maier, K. in: Lattice Defects in Semiconductors 1976, (Inst. Phys. Conf. Ser. 31, 1977), p.186.Google Scholar
26. Kalinowski, L. and Seguin, R., Appl. Phys. Lett. 35, 211 (1979).CrossRefGoogle Scholar
27. Seeger, A., Frank, W. and Foell, H. in: Lattice Defects in Semiconductors 1976, (Inst. Phys. Conf. Ser. 31, 1977), p.12.Google Scholar
28. Mizuo, S. and Higuchi, H., Jpn. J. Appl. Phys. 21, 272 (1982).Google Scholar
29. Tan, T. Y., IBM Thomas J. Watson Research Center, Yorktown Heights, N. Y. private communication.Google Scholar
30. Kitagawa, H., Hashimoto, K. and Yoshida, M., Jpn. J. Appl. Phys. 21, 276 (1982).CrossRefGoogle Scholar
31. Goesele, U. and Tan, T. Y., these proceedings.Google Scholar
32. Seeger, A. and Chik, K. P., Phys. Status Solidi 29, 455 (1968).CrossRefGoogle Scholar
33. Wada, K., Nakanishi, H., Takaoka, H. and Inoue, N., J. Cryst. Growth 57, 535 (1982).Google Scholar
34. Kishino, S., Matsushita, Y., Kanamori, M. and Iizuka, T., Jpn. J. Appl. Phys. 21, 1 (1982).Google Scholar
35. Freeland, P. E., Jackson, K. A., Lowe, C. W. and Patel, J. R., Appl. Phys. Lett. 30, 31 (1977).CrossRefGoogle Scholar
36. Dekock, A. J. R. and van de Wijgert, W. M., J. Cryst. Growth 49, 718 (1980).Google Scholar
37. Inoue, N., Wada, K. and Osaka, J. in: Semiconductor Silicon 1981, Huff, H. R., Kriegler, R. J. and Takeishi, Y., eds. (The Electrochemical Society, Pennington, 1981), p.282.Google Scholar
38. Osaka, J., Inoue, N. and Wada, K., Appl. Phys. Lett. 36, 288 (1980).Google Scholar
39. Pinizzotto, R. F. and Marks, S., these proceedings.Google Scholar
40. Leroueille, J., Phys. Status Solidi (a) 67, 177 (1981).Google Scholar
41. Osawa, A., Takizawa, R., Honda, K., Shibatomi, A. and Ohkawa, S., J. Appl. Phys. 53, 5733 (1982).Google Scholar
42. Oehrlein, G. S., Lindstroem, J. L. and Corbett, J. W., Appl. Phys. Lett. 40, 241 (1982).Google Scholar
43. Hu, S. M., Appl. Phys. Lett. 36, 561 (1980).Google Scholar
44. Kaiser, W. and Keck, P. H., J. Appl. Phys. 28, 882 (1957).Google Scholar
45. Schaake, H.F., Baber, S. C. and Pinizzotto, R. F. in: Semiconductor Silicon 1981, Huff, H. R., Kriegler, R. J. and Takeishi, Y. eds. (The Electrochemical Society, Pennington, 1981), p.273.Google Scholar