Hostname: page-component-5c6d5d7d68-wp2c8 Total loading time: 0 Render date: 2024-08-15T18:49:01.759Z Has data issue: false hasContentIssue false

Polysilicon Nanowires for chemical sensing applications

Published online by Cambridge University Press:  11 July 2012

E. Jacques
Affiliation:
Institut d’Electronique et de Télécommunications de Rennes, UMR 6074, Campus de Beaulieu, bâtiment 11 B, 263 avenue du Général Leclerc, 35042 Rennes cedex, France
L. Ni
Affiliation:
Institut d’Electronique et de Télécommunications de Rennes, UMR 6074, Campus de Beaulieu, bâtiment 11 B, 263 avenue du Général Leclerc, 35042 Rennes cedex, France
A. C. Salaün
Affiliation:
Institut d’Electronique et de Télécommunications de Rennes, UMR 6074, Campus de Beaulieu, bâtiment 11 B, 263 avenue du Général Leclerc, 35042 Rennes cedex, France
R. Rogel
Affiliation:
Institut d’Electronique et de Télécommunications de Rennes, UMR 6074, Campus de Beaulieu, bâtiment 11 B, 263 avenue du Général Leclerc, 35042 Rennes cedex, France
L. Pichon
Affiliation:
Institut d’Electronique et de Télécommunications de Rennes, UMR 6074, Campus de Beaulieu, bâtiment 11 B, 263 avenue du Général Leclerc, 35042 Rennes cedex, France
Get access

Abstract

Polycrystalline silicon nanowires are synthesized using a classical fabrication method commonly used in microelectronic industry: the sidewall spacer formation technique. Assets of this technological process rest on low cost lithographic tools use, classical silicon planar technology compatibility and the possibility to get by direct patterning numerous parallel nanowires with precise location on the substrate. Grounded and suspended polycrystalline silicon nanowires with a curvature radius as low as 150nm are integrated into resistors and used as gas (ammonia) sensors. Results show potential use of these nanowires for charged chemical species detection with an increase of the sensitivity with the increase of SiNWs exchange surface with the environment.

Type
Articles
Copyright
Copyright © Materials Research Society 2012

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Goldberger, J., Hochbaum, A. I., Fan, R., Yang, P, Nanoletters 6(5), 973 (2006)CrossRefGoogle Scholar
Yang, C., Barrelet, C. J., Capasso, F., Lieber, C.M., Nanoletters 6(12), 2929 (2006)CrossRefGoogle Scholar
Cui, Y., Wei, Q., Park, H. K., Lieber, C. M., Science, 293(5533), 1289 (2001)CrossRefGoogle Scholar
Lechuga, L.M., Tamayo, J., Álvarez, M., Carrascosa, L.G., Yufera, A., Doldán, R., Peralías, E., Rueda, A., Plaza, J.A., Zinoviev, K., Domínguez, C, Zaballos, A., Moreno, M., Martínez-A, C., Wenn, D., Harris, N., Bringer, C., Bardinal, V., Camps, T., Vergnenègre, C., Fontaine, C., Diaz, V., Bernad, A., Sensors and Actuators B 118, 2 (2006)CrossRefGoogle Scholar
Li, Z., Chen, Y., Li, X., Kamins, T.I., Nauka, K., Williams, R. S., Nanoletters 4(2), 245 (2004)CrossRefGoogle Scholar
Liu, Y, Cui, T, J Nanosci. Nanotechnol 6(4), 1019 (2006)CrossRefGoogle Scholar
Cheyssac, P., Sacilotti, M., and Patriarche, G., J. Appl. Phys. 100, 044315 (2006)CrossRefGoogle Scholar
Yu, L.. P Roca i Cabarrocas, Physical Review B 81, 085323 (2010)Google Scholar
Michelakaki, I., Nassiopoulou, A. G., Stavrinidou, E., Breza, K., Frangis, N., Nanosc. Res. Lett. 6, 414 (2011)CrossRefGoogle Scholar
Xiang-Lei, H., Guilhem, L., Pier-Francesco, F., Emmanuel, D., Microelectr. Eng., 88(8), 2622 (2011)Google Scholar
Ionica, I., Montes, L., Ferraton, S., Zimmermann, J., Saminadayar, L., Bouchiat, V., Sol. St. Electr. 49, 1497 (2005)CrossRefGoogle Scholar
Pichon, L, Rogel, R, Demami, F, Semicond. Sci. Technol. 25, 065001 (2010)CrossRefGoogle Scholar
Yang, L. et al. , VLSI Symp. Tech. Dig, p196 (2004)Google Scholar
Chou, S.Y., Krauss, R., Renstrom, P. J., Science, 85, 272 (1996)Google Scholar
Talin, A., Hunter, L., Léonard, F., Rokad, B., Appl. Phys. Lett. 89, 153102 (2006)CrossRefGoogle Scholar
Demami, F., Pichon, L., Rogel, R., Salaun, A. C., Mat. Sc. Eng. 6 012014 (2009)Google Scholar
Talin, A. A., Hunter, L. L., Leonard, F., Rokad, B., Appl. Phys. Lett, 89, 153102 (2006)CrossRefGoogle Scholar
Yu, J.Y., Chung, S.W., Heath, J.R., Jour. of Phys. Chem. B 104, 11864 (2000)CrossRefGoogle Scholar
Shimizu, Y., Eg-ashira, M., MRS Bull, June, p 18 (1999)CrossRefGoogle Scholar