Hostname: page-component-8448b6f56d-wq2xx Total loading time: 0 Render date: 2024-04-19T20:00:52.769Z Has data issue: false hasContentIssue false

Polymer Assisted Deposition (PAD) of thin metal films: A new technique to the preparation of metal oxides and reduced metal films

Published online by Cambridge University Press:  26 February 2011

Piyush Shukla
Affiliation:
piyush@lanl.gov, Los Alamos National Laboratory, Chemistry, MSJ514, Los Alamos, NM, 87544, United States, 5056673588
Yuan Lin
Affiliation:
ylin@lanl.gov, Los Alamos National Laboratory
Edel M Minogue
Affiliation:
edel@lanl.gov, Los Alamos National Laboratory
Anthony K Burrell
Affiliation:
burrell@lanl.gov, Los Alamos National Laboratory
T Mark McCleskey
Affiliation:
tmark@lanl.gov, Los Alamos National Laboratory
Quanxi Jia
Affiliation:
qxjia@lanl.gov, Los Alamos National Laboratory
Ping Lu
Affiliation:
pinglu@nmt.edu, New Mexico Institute of Mining and Technology
Get access

Abstract

Currently, there are a variety of techniques to deposit metal thin films ranging from high vacuum techniques such as chemical vapor deposition (CVD) and physical vapor deposition (PVD), through to solution methods like sol-gel. While the vacuum techniques can be limited by size and cost, sol-gel can be limited be the availability of appropriate precursors. All of these techniques have the further limitation that they cannot be used to coat porous materials conformally.

Polymer assisted deposition (PAD) addresses some of the limitations of sol-gel and costs of high vacuum techniques. PAD utilizes an aqueous polymer to bind a metal or metal complex that serves both to encapsulate the metal to prevent chemical reaction and maintain an even distribution of the metal in solution. Another advantage that PAD has is that the same solution can be used as precursors for the growth of metal oxide or reduced metal films. Herein, we report on the utility of PAD in preparing metal oxide films used to conformally coat porous material and reduced metal films.

Type
Research Article
Copyright
Copyright © Materials Research Society 2006

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Jia, Q. X.; McCleskey, T. M.; Burrell, A. K.; Lin, Y.; Wang, H.; Li, A. D. Q.; Foltyn, S. R. Nature Materials, 2004, 3, 529.10.1038/nmat1163Google Scholar
2. Martin, C. R.; Nishizawa, M.; Jirage, K.; Kang, M.; Bok Lee, S. Adv. Mater. 2001, 13, 1351.10.1002/1521-4095(200109)13:18<1351::AID-ADMA1351>3.0.CO;2-W3.0.CO;2-W>Google Scholar
3. Lakshmi, Brinda B.; Dorhout, Peter K.; Martin, Charles R. Chem. Mater. 1997, 9, 857.10.1021/cm9605577Google Scholar
4. Lakshmi, Brinda B.; Patrissi, Charles J.; Martin, Charles R. Chem. Mater. 1997, 9, 2544.10.1021/cm970268yGoogle Scholar
5. Blackburn, Jason M.; Long, David P.; Cabanas, Albertina; Watkins, James, J. Science 2001, 294, 141.10.1126/science.1064148Google Scholar
6. Tanaka, T; Kawabata, K. Vacuum, 1995, 46, 1059.10.1016/0042-207X(95)00106-9Google Scholar
7. Serp, P.; Feurer, R.; Kalck, P.; Gomes, H.; Faria, J. L.; Figueiredo, J. L. Chem. Vap. Dep., 2001, 7, 59.10.1002/1521-3862(200103)7:2<59::AID-CVDE59>3.0.CO;2-S3.0.CO;2-S>Google Scholar
8. Crofton, J.; McMullin, P. G.; Williams, J. R.; Bozack, M. J. Appl. Phys., 1995, 77, 1317.10.1063/1.358936Google Scholar
9. Paramanandam, Siva; Youngs, Lynn SPIE 1996, 2874, 272.Google Scholar
10. Maruyama, T.; Tago, T. J. Mat. Sci. 1993, 28, 5345.10.1007/BF00570088Google Scholar
11. Shukla, Piyush; Minogue, Edel M.; McCleskey, T. Mark; Jia, Quanxi; Lin, Yuan; Lu, Ping; Burrell, Anthony K. Chem. Commun., 2005, DOI:10.1039/B513410B10.1039/b513410bGoogle Scholar
12. Häglund, J.; Guillermet, A. F.; Grimvall, G.; Körling, M. Physical Review B, 1993, 48, 685.10.1103/PhysRevB.48.11685Google Scholar