Hostname: page-component-8448b6f56d-wq2xx Total loading time: 0 Render date: 2024-04-24T11:57:07.526Z Has data issue: false hasContentIssue false

Plasmon Printing – a New Approach to Near-Field Lithography

Published online by Cambridge University Press:  15 March 2011

Pieter G. Kik
Affiliation:
Thomas J. Watson Laboratory of Applied Physics, California Institute of Technology, Pasadena, CA 91125, USA
Stefan A. Maier
Affiliation:
Thomas J. Watson Laboratory of Applied Physics, California Institute of Technology, Pasadena, CA 91125, USA
Harry A. Atwater
Affiliation:
Thomas J. Watson Laboratory of Applied Physics, California Institute of Technology, Pasadena, CA 91125, USA
Get access

Abstract

We propose a method for replicating patterns with a resolution well below the diffraction limit, using broad beam illumination and standard photoresist. In particular it is shown that visible exposure (λ=410 nm) of silver nanoparticles in close proximity to a thin film of g-line resist (AZ 1813) can produce selectively exposed areas with a diameter smaller than λ/20. The technique relies on the local field enhancement around metal nanostructures when illuminated at the surface plasmon resonance frequency. The method can be extended to various metals, photosensitive layers, and particle shapes.

Type
Research Article
Copyright
Copyright © Materials Research Society 2002

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1 Rothschild, M., Bloomstein, T. M., Curtin, J. E., Downs, D. K., Fedynyshyn, T. H., Hardy, D. E., Kunz, R. R., Liberman, V., Sedlacek, J. H. C., Uttaro, R. S., Bates, A. K., and Peski, C. Van, J. Vac. Sci. Technol. B 17, 3262 (1999)Google Scholar
2 Gwyn, C. W., Stulen, R., Sweeney, D., and Attwood, D., J. Vac. Sci. Technol. B 16, 3142 (1998)Google Scholar
3 Silverman, J. P., J. Vac. Sci. Technol. B 16, 3137 (1998)Google Scholar
4 McCord, M. A., J. Vac. Sci. Technol. B 15, 2125 (1997)Google Scholar
5 Melngailis, J., Nucl. Instr. & Meth. B 80, 1271 (1993)Google Scholar
6 McCord, M.A. and Pease, R. F. W., J. Vac. Sci. Technol. B 1, 86 (1986)Google Scholar
7 Betzig, E. and Trautman, J. K., Science 257, 189 (1992)Google Scholar
8 Zhao, X. M., Xia, Y. N., and Whitesides, G. M., J. Mat. Chem. 7, 1069 (1997)Google Scholar
9 Alkaisi, M. M., Blaikie, R. J., McNab, S. J., Cheung, R., and Cumming, D. R. S., Appl. Phys. Lett. 75, 3560 (1999)Google Scholar
10 Goodberlet, J. G., Appl. Phys. Lett. 76, 667 (2000)Google Scholar
11 Blaikie, R. J., and McNab, S., Appl. Opt. 40, 1692 (2001)Google Scholar
12 McNab, S. J., and Blaikie, R. J., Appl. Opt. 39, 20 (2000)Google Scholar