Hostname: page-component-76fb5796d-22dnz Total loading time: 0 Render date: 2024-04-25T16:11:51.437Z Has data issue: false hasContentIssue false

Plasma Treatment of Polymers for Improved Adhesion

Published online by Cambridge University Press:  21 February 2011

Jeffry A. Kelber*
Affiliation:
Sandia National Laboratories Albuquerque, NM 87185, USA
Get access

Abstract

A variety of plasma treatments of polymer surfaces for improved adhesion are reviewed: noble and reactive gas treatment of fluoropolymers; noble and reactive treatment of polyolefins, and plasmainduced amination of polymer fibers. The plasma induced surface chemical and morphological changes are discussed, as are the mechanisms of adhesion to polymeric adhesives, particularly epoxy. Noble gas plasma etching of fluoropolymers produces a partially defluorinated, textured surface. The mechanical interlocking of this textured surface is the primary cause of improved adhesion to epoxy. Reactive gas plasmas also induce defluorination, but oxygen containing gases cause continual ablation of the fluoropolymer surface. Noble and reactive gas (except for hydrogen) etching of polyolefins results in surface oxidation and improved adhesion via hydrogen bonding of these oxygen containing groups across the interface. The introduction of amine groups to a polymer surface by ammonia or amine plasma treatment generally results in improved adhesion to epoxy. However, amine-epoxy ring interactions can be severely effected by steric factors due to chemical groups surrounding the amine.

Type
Research Article
Copyright
Copyright © Materials Research Society 1988

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. Bell, A. T. in Technioues and Applications of Plasma Chemistry, Hollahan, J. R. and Bell, A. T., ed., Wiley, NY (1974)ppl56 Google Scholar
2. Rossman, K., J. Polym. Sci. 19, 141 (1956)CrossRefGoogle Scholar
3. See for example Schonhorn, H., Ryan, F. W. and Hansen, R. H., J. Adhes. 2, 93 (1970) and G. M. Sessler, J. E. West, F. W. Ryan and H. Schonhorn, J. Appl. Polym. Sci. 17, 3199 (1973)CrossRefGoogle Scholar
4. Clark, D. T., Dilks, A. and Shuttleworth, D. in Polymer Surfaces, Clark, D. T. and Feast, W. J., ed., John Wiley and Sons, NY (1978) pp 185210 Google Scholar
5. For a review of the applications of XPS to the study of polymer and other organic surfaces, see Clark, D. T. and Feast, W. J., J. Macromol. Sci. Rev. Macromol. Chem. 12, 191 (1975)CrossRefGoogle Scholar
6. Burkstrand, J. M., J. Vac. Sci. and Technol. 16, 1072 (1979)Google Scholar
7. Burkstrand, J. M., Phys. Rev. B20, 4853 (1979)CrossRefGoogle Scholar
8. Bodo, P. and Sundgren, J.-E., Surf. and Interface Analysis 9, 437 (1986)Google Scholar
9. Baglin, J. E. E. E., “Ion Beam Effects on Thin Film Adhesion”, in Ion Beam Modification of Insulators, Mazzoldi, P. and Arnold, G., ed., Elsevier, Amsterdam, pp585630 (1987)Google Scholar
10. Clark, D. T. and Dilks, A., J. Polym. Sci., Polym. Chem. Ed. 15, 234 (1977)Google Scholar
11. Clark, D. T. and Dilks, A., J. Polym. Sci., Polym Chem. Ed. 16, 911 (1978)CrossRefGoogle Scholar
12. Yamamoto, S., Tabata, H., Ezoe, M., Uemori, K., Oya, Y. and Moriuchi, T., Oyo Botsuri 53, 639 (1984)Google Scholar
13. Pepper, S. V., J. Appl. Phys. 45, 2947 (1973)Google Scholar
14. Kelber, J. A., Rogers, J. W. Jr. and Ward, S. J., J. Material Res. 1, 717 (1986)CrossRefGoogle Scholar
15. Clark, D. T. and Brennan, W. J., J. Elect. Spectrosc. and Rel. Phenom. 41, 399 (1986)CrossRefGoogle Scholar
16. Murtich, M. J. and Sovey, J. S., J. Vac. Sci. and Technol. 16, 809 (1979)Google Scholar
17. Dwight, D. W. and Beck, B. R., Org. Coatings and Plast. Chem. 40, 494 (1979)Google Scholar
18. Sovey, J. S., J. Vac. Sci. and Technol. 16, 813 (1979)Google Scholar
19. Michael, R. and Stulik, D., J. Vac. Sci. and Technol. A4, 1861 (1986)Google Scholar
20. Ghose, D., Basu, D. and Karmohapatro, S. B., J. Appl. Phys. 54, 1169 (1983)Google Scholar
21. Dillon, A. F., Lehrle, R. S., Robb, J. C. and Thomas, D. W., Adv. In Mass Spectrom. 4, 477 (1967)Google Scholar
22. Wheeler, D. R. and Pepper, S. V., J. Vac. Sci. and Technol. 20, 442 (1982)Google Scholar
23. Mathias, E. and Miller, G. H., J. Phys. Chem. 71, 2671 (1967)Google Scholar
24. Dwight, D. W. and Riggs, W. M., J. Colloid and Interface Sci. 47, 650 (1974)Google Scholar
25. Chang, C.-A., Appl. Phys. Lett. 51, 1236 (1987)Google Scholar
26. Collins, G. C. S., Lowe, A. C. and Nicholas, D., Europ. Polym. Journal 9, 1173 (1973)CrossRefGoogle Scholar
27. Smolinsky, G. and Vasile, J., Europ. Polym. Journal 15, 87 (1979)Google Scholar
28. Blythe, A. R., Briggs, D., Kendall, C. R., Rance, D. G. and Zichy, V. J. I., Polymer 19, 1273 (1978)Google Scholar
29. Briggs, D. and Kendall, C. R., Polymer 20, 1053 (1979) Note that fig.6 in this paper is apparently mislabelled, as the text and subsequent discussion of the work elsewhere indicate that the oxidation process is more gradual in argon than in air discharges.Google Scholar
30. Briggs, D., Rance, D. G., Kendall, C. R. and Blythe, A. R., Polymer 21, 895 (1980)Google Scholar
31. Briggs, D. and Kendall, C. R., Int. J. of Adhesion and Adhesives, 13 (1982)Google Scholar
32. Owens, D. K., J. Appl. Polym. Sci. 19, 265 (1975)CrossRefGoogle Scholar
33. Owens, D. K., J. Appl. Polym. Sci. 19, 3315 (1975)Google Scholar
34. Gerenser, L., Elman, J. F., Mason, M. G. and Pochan, J. M., Polymer 26, 1162 (1985)Google Scholar
35. Pochan, J. M., Gerenser, L. and Elman, J. F., Polymer 27, 1058 (1986)CrossRefGoogle Scholar
36. Kim, C. Y. and Goring, D. A. I., J. Appl. Polym. Sci. 15, 1357 (1971)CrossRefGoogle Scholar
37. Nardin, M. and Ward, I. M., Mat. Sci. and Technol. 3, 814 (1987)Google Scholar
38. Chew, A., Dahm, R. H., Brewis, D. M., Briggs, D. and Rance, D. G., J. Colloid and Interface Sci. 110, 88 (1986)Google Scholar
39. See, for example Hollahan, J. R. and Stafford, B. B., J. Appl. Polym. Sci. 13, 807 (1969), one of the earlier accounts of plasma-induced amination of polymer surfaces. For more recent studies, see M. Wertheimer and H. P. Schreiber, J. Appl. Polym. Sci. 26, 2087 (1981) or H. M. Stoller and R. E. Allred, Proc. of the 18th Intern. SAMPE Conf. (Seattle, 1986) p. 993Google Scholar
40. Culler, S. R., Ishida, H. and Koenig, J. L., J. of Colloid and Interface Sci. 109, 1 (1986)Google Scholar
41. Penn, L. S., Byerly, T. J. and Liao, T. K., J. Adhesion 23, 163 (1987)CrossRefGoogle Scholar