Hostname: page-component-8448b6f56d-c47g7 Total loading time: 0 Render date: 2024-04-24T12:27:57.850Z Has data issue: false hasContentIssue false

Plasma Enhanced Metal-Organic Chemical Vapor Deposition of Germanium Nitride Thin Films

Published online by Cambridge University Press:  15 February 2011

David M. Hoffman
Affiliation:
Department of Chemistry, University of Houston, Houston, TX 77204
Sri Prakash Rangarajan
Affiliation:
Department of Chemistry, University of Houston, Houston, TX 77204
Satish D. Athavale
Affiliation:
Department of Chemical Engineering, University of Houston, Houston, TX 77204
Demetre J. Economou
Affiliation:
Department of Chemical Engineering, University of Houston, Houston, TX 77204
Jia-Rui Liu
Affiliation:
Texas Center for Superconductivity, University of Houston, Houston, TX 77204
Zongshuang Zheng
Affiliation:
Texas Center for Superconductivity, University of Houston, Houston, TX 77204
Wei-Kan Chu
Affiliation:
Texas Center for Superconductivity, University of Houston, Houston, TX 77204
Get access

Abstract

Amorphous germanium nitride thin films are prepared by plasma enhanced chemical vapor deposition from tetrakis(dimethylamido)germanium, Ge(NMe2)4, and an ammonia plasma at substrate temperatures as low as 190°C with growth rates >250 Å/min. N/Ge ratios in the films are 1.3 and the hydrogen contents are 13 atom %. The hydrogen is present primarily as N-H. The refractive indexes are close to the bulk value of 2.1, and the band gap, estimated from transmission spectra, is 4.8 eV.

Type
Research Article
Copyright
Copyright © Materials Research Society 1994

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. Nagai, H., Niimi, T., J. Electrochem. Soc. 115, 671 (1968).Google Scholar
2. Yashiro, T., J. Electrochem. Soc. 119, 780 (1972).Google Scholar
3. Young, A.B., Rosenberg, J. J. and Szendro, I., J. Electrochem. Soc. 134, 2867 (1987).Google Scholar
4. Pande, K. P., Shen, C. C., Appl. Phys. A 28, 123 (1982).Google Scholar
5. Gritsenko, V. A., Phys. Status Solid A 28, 387 (1975).Google Scholar
6. Pauleau, Y., Remy, J. -C., C. R. Acad. Sci. Paris 280, 1215 (1975).Google Scholar
7. Johnson, G. A. and Kapoor, V. J., J. Appl. Phys. 69, 3616 (1991).Google Scholar
8. Alford, D. B. and Meiners, L. G., J. Electrochem. Soc. 134, 979 (1987).Google Scholar
9. Hoffman, D. M., Rangarajan, S. P., Athavale, S. D., Deshmukh, S. C., Economou, D. J., Liu, J. R.,. Zheng, Z. S., Chu, W. K., submitted for publication.Google Scholar
10. See also: Schuh, H., Schlosser, T., Bissinger, P. and Schmidbaur, H., Z. Anorg. AlIg. Chem. 619, 1347 (1993).Google Scholar
11. See also: Mikata, Y. and Moriya, T., Eur. Pat. Appl. EP 464,515 (1991);Google Scholar
JP Appl. 171, 156 (1990); Chem. Abstr. 116: 163137c (1992).Google Scholar
12. Anderson, H. H., J. Am. Chem. Soc. L 4, 1421 (1952);Google Scholar
Mack, J., Yoder, C. H., Inorg. Chem. 8, 278 (1969).Google Scholar
13. Chu, W.-K., Mayer, J. W., Nicolet, M. -A., Backscattering Spectrometry (Academic Press: New York, N. Y., 1978).Google Scholar
14. Johnson, G. A., Kapoor, V. J., J. Appl. Phys. 69, 3616 (1991) and references therein.Google Scholar
15. Lin, K. -C., Lee, S. -C., J. AppI. Phys. 72, 5474 (1992) and references therein.CrossRefGoogle Scholar
16. Nakamoto, K. Infrared Spectra of Inorganic and Coordination Compounds, 2nd ed.(Wiley: New York, N. Y., 1970).Google Scholar
17. Yuzuriha, T. H., Hess, D. W., Thin Solid Films 140, 199 (1986).Google Scholar
18. Hantzpergue, J. J., Remy, J. C., Thin Solid Films 30, 205 (1975).CrossRefGoogle Scholar
19. Hua, Q., Rosenberg, J., Ye, J., Yang, E. S., J. Appl. Phys. 53, 8969 (1982).Google Scholar
20. Atagi, L., Hoffman, D. M., unpublished results.Google Scholar
21. Hoffman, D. M., Polyhedron, in press.Google Scholar
22. Fix, R., Gordon, R. G., Hoffman, D. M., J. Am. Chem. Soc. 112, 7833 (1990).Google Scholar