Hostname: page-component-8448b6f56d-wq2xx Total loading time: 0 Render date: 2024-04-23T12:13:14.754Z Has data issue: false hasContentIssue false

Physical and Chemical Properties of CaCl2/H2O and LiBr/H2O Systems Confined to Nanopores of Silica Gels

Published online by Cambridge University Press:  10 February 2011

Yurii I. Aristov
Affiliation:
Boreskov Institute of Catalysis Russian Academy of Sciences, Prospect Lavrentieva, 5, Novosibirsk, 630090, Russia, ARISTOV@catalysis.nsk.su
Mikhail M. Tokarev
Affiliation:
Boreskov Institute of Catalysis Russian Academy of Sciences, Prospect Lavrentieva, 5, Novosibirsk, 630090, Russia, ARISTOV@catalysis.nsk.su
Gaetano Cacciola
Affiliation:
Boreskov Institute of Catalysis Russian Academy of Sciences, Prospect Lavrentieva, 5, Novosibirsk, 630090, Russia, ARISTOV@catalysis.nsk.su
Giovanni Restuccia
Affiliation:
CNR/ITAE, 98126 Messina, Italy
Gaetano DiMarco
Affiliation:
CNR/ITS, Messina, Italy
Valentin N. Parmon
Affiliation:
Boreskov Institute of Catalysis Russian Academy of Sciences, Prospect Lavrentieva, 5, Novosibirsk, 630090, Russia, ARISTOV@catalysis.nsk.su
Get access

Abstract

Here we present physical and chemical properties of CaCl2/H2O and LiBr/H2O systems confined to nanopores of silica gels. Sorption isobars, isosters and isotherms were measured at temperature 293 – 423K and vapor partial pressure 8–133 mbar. Specific heat of the systems was found as a function of temperature (300 – 400K) and sorbed water content (0 – 53 wt.%). Solidification/melting diagrams were measured over 170 – 320K temperature range at salt concentrations 0–50 wt.%. The results obtained evidenced a significant change in the thermodynamic properties of CaCl2/H2O and LiBr/H2O systems due to confinement to the silica gel micropores.

Type
Research Article
Copyright
Copyright © Materials Research Society 1997

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. ALevitskii, E., Aristov, Yu.I., Parmon, V.N., Tokarev, M.M.: Sol. Enegy Mater. Sol. Cells, vol. 31 (1996).Google Scholar
2. Aristov, Yu.I., Tokarev, M.M., Di Marco, G., Cacciola, G., Restuccia, D., Pannon, V.N.: Russian J. Phvs. Chem., 1997, 71, N2, PP.253258.Google Scholar
3. Aristov, Yu.I., Tokarev, M.M., Cacciola, G., Restuccia, D.: Russian J. Phys. Chem., 1997, 71, N2, pp.391394.Google Scholar
4. Aristov, Yu.I., Tokarev, M.M., Cacciola, G., Restuccia, G.: React. Kimt. Cat Lett., 59, N 2, 1996, P. 325 Google Scholar
5. Aristov, Yu.I., Restuccia, G., Tokarev, M.M., Cacciola, G.: React. Kinet. Cat. Lett., 59, N 2, 1996, p. 335.Google Scholar
6. Aristov, Yu.I., Tokarev, M.M., Di Marco, G., Pannon, V.N.: React. Kinet. Cat. Lett., 61, N 1, 1997.Google Scholar
7. Gmelins Handbuch der Anorganischen Chemie, Calcium Teil B - Lieferung 2. /Hauptredakteur E.H.Erich Pietsch. Verlag Chemie GmbH, 1957.Google Scholar
8. Kirk-Othmer Encyclopedia of Chemical Engineering, 4th Ed, v.4, Wiley, New York, 1992.Google Scholar
9. Sinke, G.S., Mossner, E.H., Curnutt, J.L.: J Chem. Thermodynam., 17, 893 (1985).Google Scholar
10. Gurvich, B.M., Karimov, R.R., Mezheritskii, S.M.: Rus. J. Appl. Chem., 59, 2692 (1986).Google Scholar
11. Physical Chemistry, Ed. Kondratiev, S.N., p. 196, Vishaya shkola, Moscow 1978 (in Russian).Google Scholar
12. Greg, S.J., Sing, K.S.W.: Adsorption, Surface area and Porosity, Academic Press, 1982.Google Scholar
13. Debye, P., Huckel, E., Phy. Z, 24, 185 (1923).Google Scholar
14. Chattoraj, D.K., Birdi, K.S.: Adsorption and the Gibbs Surface Excess, Plenum, N.Y., 1984, p. 99.Google Scholar