Hostname: page-component-848d4c4894-xm8r8 Total loading time: 0 Render date: 2024-06-27T16:37:34.705Z Has data issue: false hasContentIssue false

Photoresponse Of Organic Field-Effect Transistors Based On Soluble Semiconductors And Dielectrics

Published online by Cambridge University Press:  01 February 2011

Nenad Marjanović
Affiliation:
Linz Institute for Organic Solar Cells (LIOS), Physical Chemistry, Johannes Kepler University Linz, Altenbergerstrasse 69, A-4040 Linz, Austria
Th. B. Singh
Affiliation:
Linz Institute for Organic Solar Cells (LIOS), Physical Chemistry, Johannes Kepler University Linz, Altenbergerstrasse 69, A-4040 Linz, Austria
Serap Günes
Affiliation:
Linz Institute for Organic Solar Cells (LIOS), Physical Chemistry, Johannes Kepler University Linz, Altenbergerstrasse 69, A-4040 Linz, Austria
Helmut Neugebauer
Affiliation:
Linz Institute for Organic Solar Cells (LIOS), Physical Chemistry, Johannes Kepler University Linz, Altenbergerstrasse 69, A-4040 Linz, Austria
Niyazi Serdar Sariciftci
Affiliation:
Linz Institute for Organic Solar Cells (LIOS), Physical Chemistry, Johannes Kepler University Linz, Altenbergerstrasse 69, A-4040 Linz, Austria
Get access

Abstract

Photoactive organic field-effect transistors, photOFETs, based on a conjugated polymer/fullerene blend, MDMO-PPV: PCBM (1:4), and polymeric dielectrics as polyvinylalcohol (PVA) or divinyltetramethyldisiloxane-bis(benzocyclobutene) (BCB) with top source and drain electrodes were fabricated and characterized in dark and under AM1.5 illumination. With LiF/Al as top source and drain contacts the devices feature n-type transistor behavior in dark with electron mobility of 10-2 cm2/Vs. Under illumination, a large free carrier concentration from photo-induced charge transfer at the polymer/fullerene bulk heterojunction (photodoping) is created. The device performance was studied with different illumination intensities and showed to be strongly influenced by the nature of the organic dielectric/organic semiconductor interface resulting in phototransistor behavior in BCB-based photOFETs and in phototransistor or photoresistor behavior for PVA-based photOFETs.

Type
Research Article
Copyright
Copyright © Materials Research Society 2005

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1 Sariciftci, N. S., Smilowitz, L., Heeger, A. J., and Wudl, F., Science 258, 1474 (1992).Google Scholar
2 Narayan, K. S. and Kumar, N., Appl. Phys. Lett, 79, 1891 (2001).Google Scholar
3 Hamilton, M. C., Martin, S. and Kanicki, J., IEEE Trans. Electron Devices, 51, 877 (2004).Google Scholar
4 Saragi, I., Pudzich, R., Fuhrmann, T. and Salbeck, J., Appl. Phys. Lett. 84, 2334 (2004).Google Scholar
5 Singh, Th. B., Marjanović, N., Matt, G. J., Günes, S., Sariciftci, N. S., Ramil, A. Montaigne, Andreev, A., and Sitter, H., Schwödiauer, R. and Bauer, S., Organic Electronics, in pressGoogle Scholar
6 Chua, L.-L., Ho, P. K. H., Sirringhaus, H. and Friend, R. H., Appl. Phys. Lett. 84, 3400 (2004).Google Scholar
7 Schwödiauer, R., Neugschwandtner, G. S., Bauer-Gogonea, S., Bauer, S. and Wirges, W., Appl. Phys. Lett. 75, 3998 (1999).Google Scholar
8 Singh, Th. B., Marjanović, N., Matt, G. J., Sariciftci, N. S., Schwödiauer, R. and Bauer, S., Appl. Phys. Lett. 85, 5409 (2004).Google Scholar
9 Sze, S. M., Physics of Semiconductor Devices (Wiley, New York, 1981).Google Scholar
10 Hamilton, M. C., Martin, S. and Kanicky, J., Mat. Res. Soc. Symp. Proc. Vol. 771, 333, (2003).Google Scholar