Hostname: page-component-848d4c4894-cjp7w Total loading time: 0 Render date: 2024-06-21T01:37:23.587Z Has data issue: false hasContentIssue false

Photoluminescence, Reflectance, and Magnetospectroscopy of Shallow Excitons in GaN

Published online by Cambridge University Press:  10 February 2011

B. J. Skromme
Affiliation:
Department of Electrical Engineering and Center for Solid State Electronics Research, Arizona State University, Tempe, AZ 85287-5706, skromme@asu.edu
H. Zhao
Affiliation:
Department of Electrical Engineering and Center for Solid State Electronics Research, Arizona State University, Tempe, AZ 85287-5706, skromme@asu.edu
B. Goldenberg
Affiliation:
Honeywell Technology Center, Plymouth, MN 55420
H. S. Kong
Affiliation:
Cree Research, Inc., Durham, NC22713
M. T. Leonard
Affiliation:
Cree Research, Inc., Durham, NC22713
G. E. Bulman
Affiliation:
Cree Research, Inc., Durham, NC22713
C. R. Abernathy
Affiliation:
Department of Materials Science and Engineering, University of Florida, Gainesville, FL 32611
S. J. Pearton
Affiliation:
Department of Materials Science and Engineering, University of Florida, Gainesville, FL 32611
Get access

Abstract

We report several new aspects of the excitonic properties of heteroepitaxial GaN grown on sapphire or 6H-SiC. In particular, we observed the n = 2 free exciton associated with both A and B excitons (which are distinct from the n = 1 C exciton) using reflectance and 1.7 K photoluminescence. We also studied the behavior of the n = 2 A-exciton using magnetoluminescence in fields up to 12 T. The large diamagnetic shift and splitting positively confirm the identification, yielding an exciton binding energy of about 26.4 meV. Several previous identifications of the n = 2 free exciton yielding a smaller exciton binding energy are probably in error, based on our results. We have also detected the two-electron replica of the neutral donor-bound exciton for the first time in GaN and observed its splitting pattern in magnetic fields up to 12 T. This feature is 22 meV below the principal neutral donor-bound exciton peak, independently of strain shifts in the overall spectrum. It yields a precise donor binding energy of 29 meV for the shallow residual donor in material grown by metalorganic chemical vapor deposition and gas-source molecular beam epitaxy, considerably smaller than that of the residual donor reported earlier in hydride vapor phase epitaxial material (about 35.5 meV).

Type
Research Article
Copyright
Copyright © Materials Research Society 1997

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Skromme, B.J., Bhat, R., Cox, H.M., and Colas, E., IEEE J. Quantum Electron. 25, 1035 (1989).Google Scholar
2. Matsumoto, T. and Aoki, M., Jpn. J. Appl. Phys. 13, 1583 (1974).Google Scholar
3. Amano, H., Hiramatsu, K., and Akasaki, I., Jpn. J. Appl. Phys. 27, L1384 (1988).Google Scholar
4. Naniwae, K., Itoh, S., Amano, H., Itoh, K., Hiramatsu, K., and Akasaki, I., J. Crystal Growth 99, 381 (1990).Google Scholar
5. Detchprohm, T., Hiramatsu, K., Itoh, K., and Akasaki, I., Jpn. J. Appl. Phys. 31, L1454 (1992).Google Scholar
6. Hiramatsu, K., Detchprohm, T., and Akasaki, I., Jpn. J. Appl. Phys. 32, 1528 (1993).Google Scholar
7. Kozawa, T., Kachi, T., Kano, H., Nagase, H., Koide, N., and Manabe, K., J. Appl. Phys. 77, 4389 (1995).Google Scholar
8. Gil, B., Briot, O., and Aulombard, R.-L., Phys. Rev. B 52, R17028 (1995).Google Scholar
9. Rieger, W., Metzger, T., Angerer, H., Dimitrov, R., Ambacher, O., and Stutzmann, M., Appl. Phys. Lett. 68, 970 (1996).Google Scholar
10. Li, W. and Ni, W.-X., Appl. Phys. Lett. 68, 2705 (1996).Google Scholar
11. Volm, D., Oettinger, K., Streibl, T., Kovalev, D., Ben-Chorin, M., Diener, J., Meyer, B.K., Majewski, J., Eckey, L., Hoffmann, A., Amano, H., Akasaki, I., Hiramatsu, K., and Detchprohm, T., Phys. Rev. B 53, 16543 (1996).Google Scholar
12. Chichibu, S., Shikanai, A., Azuhata, T., Sota, T., Kuramata, A., Horino, K., and Nakamura, S., Appl. Phys. Lett. 68, 3766 (1996).Google Scholar
13. Shan, W., Fischer, A.J., Song, J.J., Bulman, G.E., Kong, H.S., Leonard, M.T., Perry, W.G., Bremser, M.D., and Davis, R.F., Appl. Phys. Lett. 69, 740 (1996).Google Scholar
14. Dingle, R., Sell, D.D., Stokowski, S.E., and Ilegems, M., Phys. Rev. B 4, 1211 (1971).Google Scholar
15. Merz, C., Kunzer, M., Kaufmann, U., Akasaki, I., and Amano, H., Semicond. Sci. Technol. 11, 712 (1996).Google Scholar
16. Smith, M., Chen, G.D., Li, J.Z., Lin, J.Y., Jiang, H.X., Salvador, A., Kim, W.K., Aktas, O., Botchkarev, A., and Morkoç, H., Appl. Phys. Lett. 67, 3387 (1995).Google Scholar
17. Smith, M., Chen, G.D., Lin, J.Y., Jiang, H.X., Khan, M.A., Sun, C.J., Chen, Q., and Yang, J.W., J. Appl. Phys. 79, 7001 (1996).Google Scholar
18. Bir, G.L. and Pikus, G.E., Symmetry and Strain-Induced Effects in Semiconductors (Wiley, New York, 1974).Google Scholar
19. Reynolds, D.C., Look, D.C., Kim, W., Aktas, O., Botchkarev, A., Salvador, A., Morkoç, H., and Talwar, D.N., J. Appl. Phys. 80, 594 (1996).Google Scholar
20. Wang, Y.J., Kaplan, R., Ng, H.K., Doverspike, K., Gaskill, D.K., Ikedo, T., Akasaki, I., and Amano, H., J. Appl. Phys. 79, 8007 (1996).Google Scholar
21. Meyer, B.K., Volm, D., Graber, A., Alt, H.C., Detchprohm, T., Amano, A., and Akasaki, I., Solid State Commun. 95, 597 (1995).Google Scholar
22. Volm, D., Streibl, T., Meyer, B.K., Detchprohm, T., Amano, H., and Akasaki, I., Solid State Commun. 96, 53 (1995).Google Scholar
23. Makado, P.C. and McGill, N.C., J. Phys. C.: Solid State Phys. 19, 873 (1986).Google Scholar
24. Miklosz, J.C. and Wheeler, R.G., Phys. Rev. 153, 913 (1967).Google Scholar