Hostname: page-component-7c8c6479df-p566r Total loading time: 0 Render date: 2024-03-29T01:02:09.528Z Has data issue: false hasContentIssue false

Photoluminescence Enhancement and Morphological Properties of Carbon Codoped GaN:Er

Published online by Cambridge University Press:  03 September 2012

M.E Overberg
Affiliation:
Department of Materials Science and Engineering, University of Florida Gainesville, FL 32611, U. S. A
C.R. Abernathy
Affiliation:
Department of Materials Science and Engineering, University of Florida Gainesville, FL 32611, U. S. A
S. J. Pearton
Affiliation:
Department of Materials Science and Engineering, University of Florida Gainesville, FL 32611, U. S. A
R. G. Wilson
Affiliation:
Consultant Stevenson Ranch, CA 91381, U. S. A
J. M. Zavada
Affiliation:
U. S. Army European Research Office London, NW1 5 TH, U. K
Get access

Abstract

The surface morphology and the room temperature 1.54 µm photoluminescence (PL) intensity from GaN:Er grown by gas source molecular beam epitaxy have been investigated as a function of C concentration as introduced by CBr4. Similar to previous results with increasing Er level, increasing the C concentration initially improved the surface smoothness as measured by atomic force microscopy (AFM) and scanning electron microscopy (SEM), with RMS roughness improving by a factor of seven over undoped GaN. The PL also improved dramatically. However, the highest amounts of C investigated produced a decrease in the PL as well as a roughening of the film surface. These effects indicate that the GaN:Er had reached its C solubility limit, producing an increased amount of defect induced nonradiative recombination.

Type
Research Article
Copyright
Copyright © Materials Research Society 1999

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. Wang, X. Z. and Wessels, B. W., Appl. Phys. Lett. 67, 518 (1995).Google Scholar
2. Nakagome, H., Takahei, K., and Homma, Y., J. Crystal Growth 85, 345 (1987).Google Scholar
3. Nakata, J., Taniguchi, M., and Takahei, K., Appl. Phys. Lett. 61, 2665 (1992).Google Scholar
4. Benton, J. L., Michel, J., Kimerling, L. C., Jacobson, D. C., Xie, Y.-H., Eaglesham, D. J., Fitzgerald, E. A., and Poate, J. M., J. Appl. Phys. 70, 2667 (1991).Google Scholar
5. Favennec, P. N., L'Haridon, H., Moutonnet, D., and Guillo, Y. L., Electron. Lett. 25, 718 (1989).Google Scholar
6. Zavada, J. M. and Zhang, D., Solid State Electron. 38, 1285 (1995).Google Scholar
7. MacKenzie, J., Abernathy, C.R., Pearton, S.J., Hommerich, U., Ren, F., Wilson, R.G. and Zavada, J.M., Fall Materials Research Society Meeting Proceedings Vol. 468, 123129 (1997).Google Scholar
8. MacKenzie, J., Abernathy, C.R., Pearton, S.J., Hommerich, U., Wu, K., Schwartz, R.N., Wilson, R.G. and Zavada, J.M., J. Crystal Growth 175/176, 8488 (1997).Google Scholar
9. MacKenzie, J. D., Abernathy, C. R., and Pearton, S. J., Appl. Phys. Lett. 72, 2710 (1998).Google Scholar
10. Heikenfeld, J., Garter, M., Lee, D. S., Birkhahn, R., and Steckl, A. J., Appl. Phys. Lett. 75, 1189 (1999).Google Scholar
11. Steckl, A. J., Garter, M., Lee, D. S., Heikenfeld, J., and Birkhahn, R., Appl. Phys. Lett. 75, 2184 (1999).Google Scholar
12. Birkhahn, R. and Steckl, A. J., Appl. Phys. Lett. 73, 2143 (1998).Google Scholar
13. Birkhahn, R., Garter, M., and Steckl, A. J., Appl. Phys. Lett. 74, 2161 (1999).Google Scholar
14. Markmann, M., Neufeld, E., Sticht, A., Brunner, K., Abstreiter, G., and Buchal, Ch., Appl. Phys. Lett. 75, 2584 (1999).Google Scholar
15. Coffa, S., Priolo, F., Franzó, G., Polman, A., Libertino, S., Saggio, M., and Carnera, A., Nucl. Instr. and Meth. in Phys. Res. B 106, 386 (1995).Google Scholar
16. Priolo, F., Franzó, G., Coffa, S., Polman, A., Libertino, S., Barklie, R., and Carey, D., J. Appl. Phys. 78, 3874 (1995).Google Scholar
17. Priolo, F., Coffa, S., Franzó, G., Spinella, C., Carnera, A., and Bellani, V., J. Appl. Phys. 74, 4936 (1993).Google Scholar
18. G. Franzó, Coffa, S., Priolo, F., Spinella, C., J. Appl. Phys. 81, 2784 (1997).Google Scholar
19. MacKenzie, J. D., Abernathy, C. R., Pearton, S. J., Hömmerich, U., Wu, X., Schwartz, R., Wilson, R. G., Zavada, J. M., J. Crystal Growth 175/176, 84 (1997).Google Scholar
20. Overberg, M. E., Brand, J., MacKenzie, J. D., Abernathy, C. R., Pearton, S. J., and Zavada, J. M., Proc. of the State-of-the-Art Program on Comp. Semi. XXX, Electrochem. Soc. Proc. 99–4, 195200 (1999).Google Scholar
21. Abernathy, C. R., MacKenzie, J. D., Pearton, S. J., and Hobson, W. S., Appl. Phys. Lett. 66, 1969 (1995).Google Scholar