Hostname: page-component-8448b6f56d-tj2md Total loading time: 0 Render date: 2024-04-19T00:33:30.867Z Has data issue: false hasContentIssue false

Photoluminescence by Hydrogenated Carbon Solids in Interstellar Space

Published online by Cambridge University Press:  21 February 2011

Adolf N. Witt*
Affiliation:
University of Toledo Department of Physics & Astronomy Toledo, OH 43606
Get access

Abstract

We review the observational evidence for the widespread existence of hydrogenated carbon dust in astronomical environments. Photoluminescence by such materials appears strongly enhanced in regions where additional hydrogenation becomes possible, e.g. through the photodissociation of abundant molecular hydrogen. Recent laboratory experiments have demonstrated that rehydrogenation of previously annealed hydrogenated amorphous carbon (HAC) does indeed restore the photoluminescence, and furthermore, hydrogenation of pure amorphous carbon leads to characteristic HAC photoluminescence, which can be further enhanced by UV irradiation. Present evidence suggests that hydrogenated amorphous carbon may represent a significant fraction of the interstellar dust mass in the Milky Way Galaxy.

Type
Research Article
Copyright
Copyright © Materials Research Society 1994

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Spitzer, L., Physical Processes in the Interstellar Medium, (John Wiley & Sons, Publ., New York, 1978).Google Scholar
2. Purcell, E.M., Astroph. J. 158, 433 (1969).Google Scholar
3. Mathis, J.S., Rep. Progr. Phys. 56, 605 (1993).Google Scholar
4. Kim, S.-H., Martin, P.G., and Hendry, D.P., Astrophy. J. 422, 164 (1994).Google Scholar
5. Whittet, D.C.B., Dust in the Galactic Environment, (Institute of Phys. Publ., Bristol, 1992).Google Scholar
6. Witt, A.N., in Interstellar Dust, edited by Allamandola, L.J. and Tielens, A.G.G.M. (Kluwer Acad. Publ., Dordrecht, 1989), pp 87100.Google Scholar
7. Roche, P.F., in Dust in the Universe, edited by Bailey, M.E. and Williams, D.A., (Cambridge Univ. Press, Cambridge, 1988), pp 415433.Google Scholar
8. Roche, P.F. and Aitken, D.K., Mon. Not. Roy. Astron. Soc., 208, 481 (1984).Google Scholar
9. McCarthy, J.F., Forrest, W.J., Briotta, D.A., and Houck, J.R., Astroph. J. 242, 965 (1980).Google Scholar
10. Stecher, T.P., Astroph. J. 142, 1683 (1965).Google Scholar
11. Draine, B.T., in Interstellar Dust, edited by Allamandola, L.J. and Tielens, A.G.G.M., (Kluwer Acad. Publ. Dordrecht, 1989), pp 313327.Google Scholar
12. Mathis, J.S., Astroph. J. 422, 176 (1994).Google Scholar
13. Anders, E. and Grevesse, N., Geochim. Cosmochim. Acta 53, 197 (1989).Google Scholar
14. Giess, D.R. and Lambert, D.A., Astroph. J. 387, 673 (1992).Google Scholar
15. Sofia, U.J., Cardelli, J.A., and Savage, B.D., Astroph. J. (Aug. 1, 1994) in press (1994).Google Scholar
16. Bernatowicz, T., Fraundorf, G., Tang, M., Anders, E., Wopenka, B., Zinner, E., and Fraundorf, P., Nature 330, 728 (1987).Google Scholar
17. Amari, S., Anders, E., Virag, A., and Zinner, E., Nature 345, 238 (1989).Google Scholar
18. Lewis, R.s., Tang, M., Wacker, J.F., Anders, E., and Steel, E., Nature 326, 160 (1987).Google Scholar
19. Schmidt, G.D., Cohen, M., and Margon, B., Astroph. J. 239, L133 (1980).Google Scholar
20. Duley, W.W., Mon. Not. Roy. Astron. Soc. 215, 259 (1985).Google Scholar
21. Watanabe, I., Hasegawa, S., and Kurata, Y., Jpn, J. Appl. Phys. 21, 856 (1982).Google Scholar
22. Allamandola, L.J., Tielens, A.G.G., and Barker, J.R., Astroph. J. Suppl. 71 733 (1989).Google Scholar
23. d'Hendecourt, L.B., Leger, A., Olofsson, G., and Schmidt, W., Astron. & Astroph. 170, 91 (1986).Google Scholar
24. Webster, A., Mon. Not. Roy. Astron. Soc. 264, Li (1993).Google Scholar
25. Sakata, A., Wada, S., Narisawa, T., Asano, Y., Iijima, Y., Onaka, T., and Tokunaga, A.T., Astroph. J. M, L51 (1993).Google Scholar
26. Witt, A.N., Schild, R.E., and Kraiman, J.B., Astroph. J. 281, 708 (1984).Google Scholar
27. Witt, A.N. and Schild, R.E., Astroph. J. Suppl. 62, 839 (1986).Google Scholar
28. Witt, A.N. and Schild, R.E., Astroph. J. 294, 225 (1985).Google Scholar
29. Witt, A.N. and Schild, R.E., Astroph. J. 325, 837 (1988).Google Scholar
30. Witt, A.N. and Boroson, T.A., Astroph. J. 355, 182 (1990).Google Scholar
31. Witt, A.N., Stecher, T.P., Boroson, T.A., and Bohlin, R.C., Astroph. J. 336, L21 (1989).Google Scholar
32. Witt, A.N. and Malin, D.F., Astroph. J. 347, L25 (1989).Google Scholar
33. Zuckerman, B. and Aller, L.H., Astroph. J. 301, 772 (1986).Google Scholar
34. Furton, D.G. and Witt, A.N., Astroph. J. 364, L45 (1990).Google Scholar
35. Furton, D.G. and Witt, A.N., Astroph. J. 386, 587 (1992).Google Scholar
36. Perrin, J.-M. and Sivan, J.-P., Astron. & Astroph. 255, 271 (1992).Google Scholar
37. Sivan, J.-P., and Perrin, J.-M., Astroph. J. 404, 258 (1993).Google Scholar
38. Chlewicki, G., and Laureijs, R.J., in Polycyclic Aromatic Hydrocarbons and Astrophysics, edited by Leger, A., d'Hendecourt, L., & Boccara, N. (Reidel Publ., Dordrecht, 1987), pp 335337.Google Scholar
39. Guhathakurta, P., and Tyson, J.A., Astroph. J. 346, 773 (1989).Google Scholar
40. Furton, D.G., Ph.D. Thesis, The University of Toledo, 1993.Google Scholar
41. Furton, D.G. and Witt, A.N., Astroph. J. 415, L51 (1993).Google Scholar
42. Balooch, M. and Olander, D.R., J. Chem. Phys. 63, 4772 (1975).Google Scholar