Hostname: page-component-76fb5796d-5g6vh Total loading time: 0 Render date: 2024-04-25T10:14:50.868Z Has data issue: false hasContentIssue false

Photoluminescence and Structural Properties of CdSe Quantum Dot-Polymer Composite Films

Published online by Cambridge University Press:  19 November 2013

L. Borkovska
Affiliation:
V. Lashkaryov Institute of Semiconductor Physics, NASU, pr. Nauky 41, 03028 Kyiv, Ukraine
N. Korsunska
Affiliation:
V. Lashkaryov Institute of Semiconductor Physics, NASU, pr. Nauky 41, 03028 Kyiv, Ukraine
T. Stara
Affiliation:
V. Lashkaryov Institute of Semiconductor Physics, NASU, pr. Nauky 41, 03028 Kyiv, Ukraine
V. Bondarenko
Affiliation:
V. Lashkaryov Institute of Semiconductor Physics, NASU, pr. Nauky 41, 03028 Kyiv, Ukraine
O. Gudymenko
Affiliation:
V. Lashkaryov Institute of Semiconductor Physics, NASU, pr. Nauky 41, 03028 Kyiv, Ukraine
O. Stroyuk
Affiliation:
L. Pysarzhevsky Institute of Physical Chemistry, NASU, pr. Nauky 31, 03028 Kyiv, Ukraine
O. Raevska
Affiliation:
L. Pysarzhevsky Institute of Physical Chemistry, NASU, pr. Nauky 31, 03028 Kyiv, Ukraine
T. Kryshtab
Affiliation:
ESFM - Instituto Politécnico Nacional, Av. IPN, Ed.9 U.P.A.L.M., 07738 Mexico D.F.Mexico
Get access

Abstract

Thermal stability of the luminescent properties of CdSe and CdSe/ZnS quantum dots (QDs) in polymer films of gelatin and polyvinyl alcohol (PVA) is studied. Thermal annealing of the films at the air ambience at 100 °C is found to result in two effects in the photoluminescence (PL) spectra: (i) an enhancement of the PL intensity and (ii) a red spectral shift of the PL bands. The first effect is observed in both QDs-gelatin and QDs-PVA composites, while the second one - in the QDs-gelatin only. The passivation of CdSe QDs with ZnS shell reduces the effects. The enhancement of the PL intensity is supposed to be due to the decrease of nonradiative defect density. The red shift is explained by dissociation of coordination bonds between surface Cd atoms and amino-groups of gelatin. This dissociation decreases the PL intensity too. This effect competes with the effect of PL enhancement and is supposed to be responsible for non-monotonous dependence of the PL intensity versus annealing time in the QDs-gelatin composite.

Type
Articles
Copyright
Copyright © Materials Research Society 2013 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Nozik, A. J., Beard, M. C., Luther, J. M., Law, M., Ellingson, R. J., Johnson, J. C., Chem. Rev. 110, 6873 (2010).CrossRefGoogle Scholar
Mattoussi, H., Palui, G., Na, H. B., Advanced Drug Delivery Reviews 64, 138 (2012).CrossRefGoogle Scholar
Walling, M.A., Novak, J.A., Shepard, J.R.E., Int. J. Mol. Sci. 10, 441 (2009).Google Scholar
Byrne, S.J., Williams, Y., Davies, A., Corr, S.A., Rakovich, A., Gun’ko, Y.K., Rakovich, Y.R., Donegan, J.F., Volkov, Y., Small 3, 1152 (2007)CrossRefGoogle Scholar
Raevskaya, A.E., Stroyuk, A.L., Kuchmiy, S. Ya., J. Colloid Interface Sci. 302, 133 (2006).CrossRefGoogle Scholar
Wang, Y., Chen, H., Ye, C., Hu, Y., Materials Letters 62, 3382 (2008).CrossRefGoogle Scholar
Chen, L., Willoughby, A., Zhang, J., Luminescence (2013) Doi: 10.1002/bio.2505.Google ScholarPubMed
Baskoutas, S., and Terzis, A.F., J. Appl. Phys. 99, 013708 (2006).CrossRefGoogle Scholar
Yakimets, I., Wellner, N., Smith, A. C., Wilson, R. H., Farhat, I., Mitchell, J., Polymer 46, 12577 (2005).CrossRefGoogle Scholar
Jayasekara, R., Harding, I., Bowater, I., Christie, G.B.Y., Lonergan, G.T., Polymer Testing 23, 17 (2004).CrossRefGoogle Scholar
Kortan, A.R., Hull, R., Opila, R.L., Bawendi, M.G., Steigerwald, M.L., Carroll, P.J., Brus, L.E., J. Am. Chem. Soc. 112, 1327 (1990).CrossRefGoogle Scholar
Dabbousi, B.O., Rodriguez-Viejo, J., Mikulec, F.V., Heine, J.R., Mattoussi, H., Ober, R., Jensen, K.F., Bawendi, M.G., J. Phys. Chem. 101, 9463 (1997).CrossRefGoogle Scholar
Baranov, A. V., Rakovich, Yu. P., Donegan, J. F., Perova, T. S., Moore, R. A., Talapin, D. V., Rogach, A. L., Masumoto, Y., Nabiev, I., Phys. Rev. B 68, 165306 (2003).Google Scholar
Kozlov, P.V., and Burdygina, G.I., Polymer 24, 651 (1983).CrossRefGoogle Scholar
Esposito, E., Cortesi, R., Nastruzzi, C., Biomaterials 17, 2009 (1996).CrossRefGoogle Scholar
Yannas, I.V., and Tobolsky, A.V., Nature 215, 509 (1967).CrossRefGoogle Scholar
Talapin, D. V., Rogach, A. L., Kornowski, A., Haase, M., Weller, H., Nano Lett. 1, 207 (2001).CrossRefGoogle Scholar
Wuister, S. F., Swart, I., van Driel, F., Hickey, S. G., de Mello Donega, C., Nano Lett. 3, 503 (2003).Google Scholar
Yuan, C.-T., Chou, W.-C., Chuu, D.-S., Chang, W. H., Lin, H.-S., Ruaan, R.-C., J. Med. and Biol. Eng. 26, 131 (2006).Google Scholar
Hu, L., Wu, H., Du, L., Ge, H., Chen, X., and Dai, N., Nanotechnology 22, 125202 (2011).CrossRefGoogle Scholar
Lisensky, G. C., Penn, R. L., Murphy, C. J., and Ellis, A. B., Science 248, 840 (1990).CrossRefGoogle Scholar