Hostname: page-component-cd9895bd7-7cvxr Total loading time: 0 Render date: 2025-01-02T19:23:00.822Z Has data issue: false hasContentIssue false

Photoluminescence and Raman Spectra of Flux Processed Bulk Single Crystal GaN

Published online by Cambridge University Press:  21 March 2011

Chae Ryong Cho
Affiliation:
COMTECS Ltd, Advanced Materials Research Laboratory, Taegu, 704-702, KOREA
Sang Eon Park
Affiliation:
COMTECS Ltd, Advanced Materials Research Laboratory, Taegu, 704-702, KOREA Department of Physics, Pusan National University, Pusan, 609-735, KOREA
Yong Chan Cho
Affiliation:
COMTECS Ltd, Advanced Materials Research Laboratory, Taegu, 704-702, KOREA Department of Physics, Pusan National University, Pusan, 609-735, KOREA
Se-Young Jeong
Affiliation:
Department of Physics, Pusan National University, Pusan, 609-735, KOREA
Get access

Abstract

Bulk wurtzite-GaN crystal was obtained with a size more than 3 mm along the length of the crystal and with a thickness 200 ∼ 300 µm at around 750°C and 100 bar for 24 hrs in the flux growth method. The structural and compositional property of the GaN bulk single crystal was also studied by X-ray diffraction (XRD) and X-ray photoelectron spectroscopy (XPS) techniques. Photoluminescence, cathodoluminescence and micro-Raman measurements at room temperature are investigated for bulk single crystals of wurtzite GaN. The cathodoluminescence peak of near band-to-band transition at 365.5 nm and the E2(high energy, 568 cm−1) and A1(LO, 737 cm−1) Raman phonon modes were obtained according to the different position of the (0001) surface of GaN grown by flux method. Sharp line shape for the strain-sensitive E2 (high) mode is considered to be due to the high crystalline quality of the crystal.

Type
Research Article
Copyright
Copyright © Materials Research Society 2001

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Nakamura, S., Senoh, M., Nagahama, S., Iwasa, N., Yamada, T., Matsushida, T., Kiyoku, H., Sugimoto, Y., Jpn. J. Appl. Phys. 35, L74 (1996).Google Scholar
2. Nakamura, S., Senoh, M., Iwasa, N., Nagasawa, S., Yamada, T., Mukai, T., Jpn. J. Appl. Phys. 34, L1332 (1995).Google Scholar
3. Lester, S.D., Ponce, F.A., Crawford, M.G., Steigerwald, D.A., Appl. Phys. Lett. 66, 1249 (1995).Google Scholar
4. Krukowski, S., Cryst. Res. Technol. 34, 785 (1999).Google Scholar
5. Porowski, S., Grzegory, I., J. Crystal Growth 178, 174 (1997).Google Scholar
6. Molnar, R. J., Gotz, W., Romano, L. T., and Johnson, N. M., J. Crystal Growth 178, 147 (1997).Google Scholar
7. Valcheva, E., Paskova, T., Tungasmita, S., Persson, P. O. A., Birch, J., Svedberg, E. B., Hultman, L., and Monemar, B., Appl. Phys. Lett 76, 1860 (2000).Google Scholar
8. Fareed, R. S. Qhalid, Tottori, S., Nishino, K., Sakai, S., J. Crystal Growth 200, 348 (1999).Google Scholar
9. Visconti, P., Jones, K. M., Reshchikov, M. A., Yun, F., Cingolani, R., Morkoc, H., Park, S. S., and Lee, K. Y., Appl. Phys. Lett. 77, 3743 (2000)Google Scholar
10. Gibert, D. R., Novikov, A., Partrin, N., Budai, J. S., Kelly, F., Chodelka, R., Abbashian, R., Pearton, S. J., and Singh, R., Appl. Phys. Lett 77, 4172 (2000).Google Scholar
11. Yano, M., Okamoto, M., Yap, Y. K., Yoshimura, M., Mori, Y., and Sasaki, T., Diamond and Related Material 9, 512 (2000).Google Scholar
12. Yamane, H., Shimada, M., Sekiguchi, T., and DiSalvo, F. J., J. Crystal Growth 186, 8 (1998).Google Scholar
13. Yano, M., Okamoto, M., Yap, Y. K., Yoshimura, M., Mori, Y. and Sasaki, T., Jpn. J. Appl. Phys. 38, L1121 (1999).Google Scholar
14. Kaufmann, U., Kunzer, M., Obloh, H., Maier, M., Manz, Ch., Ramakrishnam, A., and Santic, B., Phys. Rev. B 59, 5561 (1999)Google Scholar
15. Kozawa, T., Kachi, T., Kano, H., Taga, Y., and Hashimoto, M., Koide, N. and Manabe, K., J. Appl. Phys. 75, 1098 (1994).Google Scholar
16. Perlin, P., Jauberthic-Carillon, C., Itie, J. P., Miguel, A., Grzegory, I., Polian, A., Phys. Rev. B 45, 83 (1992).Google Scholar
17. Siegle, H., Eckey, L., Hoffmann, A., and Thomsen, C., Meyer, B. K., Solid State Communications, 96, 943 (1995).Google Scholar
18. Perlin, P., Camassel, J., Knap, W., Taliercio, T., Chervin, J. C., Suski, T., Grzegory, I., and Porowski, S., Appl. Phys. Lett. 67, 2524 (1995).Google Scholar
19. Gibert, D. R., Novikov, A., Partrin, N., Budai, J. S., Kelly, F., Chodelka, R., Abbashian, R., Pearton, S. J., and Singh, R., Appl. Phys. Lett 77, 4172 (2000).Google Scholar
20. Lester, S.D., Ponce, F.A., Craford, M.G., Steigerwald, D.A., Appl. Phys. Lett. 66, 1249 (1995)Google Scholar
21. Demangeot, F., Frandon, J., Renucci, M. A., Meny, C., Briot, O., and Aulombard, R. L., J. Appl. Phys. 82, 1305 (1997).Google Scholar
22. Hayes, J. M. and Kuball, M., Bell, A., Harrison, I., Korakakis, D., and Foxon, C. T., Appl. Phys. Lett, 75, 2097 (1999).Google Scholar
23. Wolter, S. D., Luther, B. P., Waltemyer, D. L., Onneby, C., and Mohney, S. E., Molnar, R. J., Appl. Phys. Lett, 70, 2156 (1997).Google Scholar