Hostname: page-component-7c8c6479df-p566r Total loading time: 0 Render date: 2024-03-29T12:36:35.961Z Has data issue: false hasContentIssue false

Photoinduced Charge Transfer Studies in Bolaamphiphile-Gramicidin-Porphyrin Membranes

Published online by Cambridge University Press:  15 February 2011

David H. Thompson
Affiliation:
Biomolecular Materials Research Group, Department of Chemical and Biological Sciences, Oregon Graduate Institute of Science and Technology, 19600 NW von Neumann Drive, Beaverton, OR 97006-1999
J.-M. Kim
Affiliation:
Biomolecular Materials Research Group, Department of Chemical and Biological Sciences, Oregon Graduate Institute of Science and Technology, 19600 NW von Neumann Drive, Beaverton, OR 97006-1999
Get access

Abstract

Synthetic ether-linked bolaform amphiphile vesicles and a novel gramicidin-porphyrin “diad” have been prepared. Photoinduced electron transfer properties of the diad were compared in bilayer (dihexadecylphosphate, DHP) and monolayer (2,2′-0-didecyl-1,1′-0-eicosamethylene-racdiglycero- 3,3′-diphosphoric acid, PS20) membrane vesicles with dithiothreitol sacrificial donor and methyl viologen electron acceptor present on both vesicle membrane surfaces. Although the rates of methyl viologen photoreduction varied depending on the mode of diad orientation within DHP bilayer membranes, photoreduction rates were not orientation-dependent in bolaform membrane vesicles containing the gramicidinporphyrin diad. The relevance of these results on vectorial electron transfer processes in closed membrane systems is briefly discussed.

Type
Research Article
Copyright
Copyright © Materials Research Society 1992

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Kim, J.-M. and Thompson, D. H., Langmuir 8, 637 (1992).Google Scholar
2. Thompson, D. H., Wong, K. F., Humphrey-Baker, R., Wheeler, J., Kim, J.-M., Rananavare, S. B., submitted for publication.Google Scholar
3. Hurst, J. K. and Thompson, D. H., J. Memb. Sci. 28, 3 (1986).Google Scholar
4. Patterson, B. C., Thompson, D. H., Hurst, J. K., edited by Aviram, A. (Engineering Foundation Press, New York, 1989), p. 385.Google Scholar
5. Zhao, Z.-G. and Tollin, G., Photochem. Photobiol. 55, 611 (1992).Google Scholar
6. Robinson, J. N., Cole-Hamilton, D. J., Chem. Soc. Rev. 20, 49 (1991).CrossRefGoogle Scholar
7. Armitage, B. and O'Brien, D. F., J. Am. Chem. Soc. 113, 9678 (1991).Google Scholar
8. Fuhrhop, J.-H., Hungerbihler, H., Siggel, U., Langmuir 6, 1295 (1990).Google Scholar
9. Thompson, D. H., Lymar, S., and Kim, J.-M., manuscript in preparation.Google Scholar
10. Urry, D. W., Venkatachalam, C. M., Prasad, K. U., Bradley, R. J., Parenti-Castelli, G., Lenaz, G., Int. J. Quantum Chem., Quantum Biol. Symp. No. 8, 385 (1981).Google Scholar
11. Hope, M. J., Bally, B. M., Webb, G., Cullis, P. R., Biochim. Biophys. Acta 812, 55 (1985).CrossRefGoogle Scholar
12. Humphry-Baker, R., Thompson, D. H., Lei, Y., Hope, M. J., Hurst, J. K., Langmuir 7, 2592 (1991).CrossRefGoogle Scholar
13. Hope, M. J., Wong, , Cullis, P. R., J. Electron Microsc. Technol. 13, 277 (1989).CrossRefGoogle Scholar
14. Hauser, H., Proc. Natl. Acad. Sci. USA 86, 5351 (1989).Google Scholar
15. Weinstein, S., Wallace, B. A., Blout, E. R., Morrow, J. S., Veatch, W., Proc. Nat. Acad. Sci. USA 76, 4230 (1979).Google Scholar
16. Killian, J. A., Prasad, K. U., Hains, D., Urry, D. W., Biochemistry 27, 4848 (1988).CrossRefGoogle Scholar