Hostname: page-component-77c89778f8-vsgnj Total loading time: 0 Render date: 2024-07-17T11:15:23.045Z Has data issue: false hasContentIssue false

Photoinduced Changes in the Charge States of Native Donors and Acceptors in ZnGeP2

Published online by Cambridge University Press:  10 February 2011

K. T. Stevens
Affiliation:
Department of Physics, West Virginia University, Morgantown, WV 26506
S. D. Setzler
Affiliation:
Sanders - a Lockheed Martin Co., Nashua, NH 03061
P. G. Schunemann
Affiliation:
Sanders - a Lockheed Martin Co., Nashua, NH 03061
T. M. Pollak
Affiliation:
Sanders - a Lockheed Martin Co., Nashua, NH 03061
N. C. Giles
Affiliation:
Department of Physics, West Virginia University, Morgantown, WV 26506
L. E. Halliburton
Affiliation:
Department of Physics, West Virginia University, Morgantown, WV 26506
Get access

Abstract

Bulk ZnGeP2 (ZGP) crystals grown for high-power tunable mid-infrared laser systems contain large concentrations of three native defects. Using EPR, these three defects have been identified as the Zn vacancy (an acceptor), the phosphorus vacancy (a donor), and the germanium-on-zinc antisite (also a donor). We have studied the wavelength dependence of the photoinduced changes in the EPR signal intensity of the three defect centers using 633 nm and 1064 nm light. We observe a significant increase in the EPR signal under 633 nm light. The 633-nm light also produces an increase in the defect-related 1-R.m absorption band, and we have used a spectrophotometer to measure the spectral shape of the photoinduced change in absorption in this near-IR region. The 633-nm wavelength produces paramagnetic forms of both donor centers, while 1064 nm light only produces the EPR-active center. Time decays of the photoinduced EPR signals have been measured for each of the donors.

Type
Research Article
Copyright
Copyright © Materials Research Society 2000

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. Rakowsky, M. H., Kuhn, W. K., Lauderdale, W. J., Halliburton, L. E., Edwards, G. J., Scripsick, M. P., Schunemann, P. G., Pollak, T. M., Ohmer, M. C., and Hopkins, F. K., Appl. Phys. Lett. 64, 1615 (1994).Google Scholar
2. Halliburton, L. E., Edwards, G. J., Scripsick, M. P., Rakowsky, M. H., Schunemann, P. G., and Pollak, T. M., Appl. Phys. Lett. 66, 2670 (1995).Google Scholar
3. Stevens, K. T., Setzler, S. D., Halliburton, L. E., Fernelius, N. C., Schunemann, P. G., and Pollak, T. M., Mater. Res. Soc. Symp. Proc. 484, 549 (1998).Google Scholar
4. Zapol, Peter, Pandey, Ravindra, Ohmer, Mel, and Gale, Julian, J. Appl. Phys. 79, 671 (1996).Google Scholar
5. Giles, N. C., Halliburton, L. E., Schunemann, P. G., and Pollak, T. M., Appl. Phys. Lett. 66, 1758 (1995).Google Scholar
6. Setzler, S. D., Giles, N. C., Halliburton, L. E., Schunemann, P. G., and Pollak, T. M., Appl. Phys. Lett. 74, 1218 (1999).Google Scholar
7. Setzler, S. D., Schunemann, P. G., Pollak, T. M., Ohmer, M. C., Goldstein, J. T., Hopkins, F. K., Stevens, K. T., Halliburton, L. E., and Giles, N. C., J. Appl. Phys. 86, 6677 (1999).Google Scholar
8.M. Moldovan, Stevens, K. T., Halliburton, L. E., Schunemann, P. G., Pollak, T. M., Setzler, S. D., and Giles, N. C. (paper appearing in this MRS Proceedings volume).Google Scholar