Hostname: page-component-7479d7b7d-qs9v7 Total loading time: 0 Render date: 2024-07-11T15:21:37.445Z Has data issue: false hasContentIssue false

Phase-Field Modelling of radiation induced microstructures

Published online by Cambridge University Press:  21 April 2015

L. Luneville
Affiliation:
DEN/DANS/DMN/SRMA/LA2M/LRC-CARMEN, CEA Saclay, 91191 Gif-sur-Yvette, France
G. Demange
Affiliation:
DEN/DANS/DM2S/SERMA/LLPR/LRC-CARMEN, CEA Saclay, 91191 Gif-sur-Yvette, France
V. Pontikis
Affiliation:
DSM/IRAMIS/LSI, CEA Saclay, 91191 Gif-sur-Yvette, France
D. Simeone
Affiliation:
DEN/DANS/DM2S/SERMA/LLPR/LRC-CARMEN, CEA Saclay, 91191 Gif-sur-Yvette, France
Get access

Abstract

This work shows that realistic irradiation-induced phase separation and the resulting microstructures can be obtained via an adapted Phase Field (PF) modelling combined with atomistic Monte Carlo simulations in the pseudo-grand canonical ensemble. The last allow for calculating the equilibrium phase diagram of the silver-copper alloy, chosen as a model of binary systems with large miscibility gap and, for extracting the parameters of the excess free-energy PF functional. Relying on this methodology, the equilibrium phase diagram of the alloy is predicted in excellent agreement with its experimental counterpart whereas, under irradiation, the predicted microstructures are functions of the irradiation parameters. Different irradiation conditions trigger the formation of various microstructures consistently presented as a non-equilibrium “phase diagram” aiming at facilitating the comparison with experimental observations.

Type
Articles
Copyright
Copyright © Materials Research Society 2015 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Cheng, Y., Mater. Sci. Rep. 5, 45 (1990)CrossRefGoogle Scholar
Simeone, D., Baldinozzi, G., Gosset, D., Mazerolles, L., Phys Rev B 70, 134116 (2004)CrossRefGoogle Scholar
Baldinozzi, G., Simeone, D., Gosset, D., Monnet, I., Mazerolles, L., PRB 74, 132107 (2006)CrossRefGoogle Scholar
Bernas, H., Attane, J. P., Heinig, K. H., Halley, D., Ravelosona, D., Marty, A., Auric, P., Chappert, C., Samson, Y., Phys. Rev. Lett. 91, 077203 (2003)CrossRefGoogle Scholar
Bolse, W., Mater. Sci. Eng. R. 12, 53 (1994)CrossRefGoogle Scholar
Toledano, P., V. Dimitriev Reconstructive Phase transition, World scientific (1996).CrossRefGoogle Scholar
Katchaturyan, A., Theory of structural transformation in solids, John Wiley, (1983).Google Scholar
Allen, M., Tildesley, D., Computer simulation of liquids, Clarendon Press, Oxford, pp 212239 (1987)Google Scholar
Briki, M., Etude du couplage entre structure et ordre chimique dans les agrégats bimétalliques, Ph. D., Université Paris Sud – Paris XI (2013)Google Scholar
Binary alloy phase diagram, Massalski, T., Editor in chief, vol1, Ohahio (1990)Google Scholar
Cross, M. and Hohenberg, P., Rev Mod. Phys. 65, 851 (1993)CrossRefGoogle Scholar
Simeone, D., Demange, G., Luneville, L., Phys. Rev. E 88(3), 032116 (2013)CrossRefGoogle Scholar
Martin, G., Phys. Rev. B 30, 1424 (1984)CrossRefGoogle Scholar
Simeone, D., Luneville, L., Serruys, Y., Phys. Rev. E 82, 011122 (2010)CrossRefGoogle Scholar
Podzorov, K., Luneville, L., Hayoun, M., Stoller, R., Simeone, D., Nucl, J.. Mat 458, 168 (2015).Google Scholar
Enrique, R., Nordlung, K., Averbach, R., Bellon, P., J. of Appl. Phys. 93(5), 2917, (2003)CrossRefGoogle Scholar
Glotzer, S., Coniglio, A., Phys. Rev. E 50(5), 4241 (1994)CrossRefGoogle Scholar
Butrymowicz, B., Manning, J., Read, M., J. Phys. Chem. Ref. Data, vol 3(2) (1974)CrossRefGoogle Scholar
Wei, L., Averback, R., J of Appl. Phys. 81, 613 (1997)CrossRefGoogle Scholar