Hostname: page-component-76fb5796d-9pm4c Total loading time: 0 Render date: 2024-04-25T14:37:34.171Z Has data issue: false hasContentIssue false

The Performance Study of Ion Implanter Based Medium Energy Ion Spectroscopy with Solid State Detector

Published online by Cambridge University Press:  22 February 2011

Z. J. Radzimski
Affiliation:
Analytical Instrumentation Facility, North Carolina State University, Raleigh, NC 27695, USA
S. Yokoyama
Affiliation:
Research Center for Integrated Systems, Hiroshima University, Higashi Hiroshima 724, Japan
K. Ishibashi
Affiliation:
Department of Electrical Engineering, Hiroshima University, Higashi Hiroshima 724, Japan
M. Hirose
Affiliation:
Department of Electrical Engineering, Hiroshima University, Higashi Hiroshima 724, Japan
Get access

Abstract

Medium-energy ion spectroscopy using a conventional ion implanter has been developed to study the properties of semiconductor subsurface regions. The system is equipped with solid state detector and operaties with He+ ion energy up to 200 keV. We have tested the system performance for various applications, such as, silicon diffusion through a thin Au layer, a low dose, low energy As implantion and damage of silicon surface caused by plasma treatment.

Type
Research Article
Copyright
Copyright © Materials Research Society 1994

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. Bird, J. R. and Williams, J. S., Ion Beams for Materials Analysis, (Academic Press Australia, 1989).Google Scholar
2. Chu, W. -K., Mayer, J. W. and Nicolet, M. -A., Backscattering Spectrometry, (Academic Press, New York, 1977).Google Scholar
3. Boerma, D. O., Nucl. and Instr. Meth. B50 77 (1990).CrossRefGoogle Scholar
4. Ziegler, J. F.: Helium, Stopping Power and Ranges in All Elemental Matter, (Pergamon Press, New York, 1977).Google Scholar
5. S.M.Yalisove and Graham, W.R., J. Vac. Sci. Technol. A6 588 (1988).Google Scholar
6. Kido, Y., Kawamoto, J. and Miyake, Y., Proc. 12th Symp. of ISIAT'89, Tokyo 1989, 557.Google Scholar
7. Smeenk, R. G.. Tromp, R. M., Kersten, H. H., Boerboom, A. J. H. and Saris, F. W., Nucl. Instr. and Meth. 195 581 (1982).CrossRefGoogle Scholar
8. Graham, W. R., Yalisove, S. M., Adams, E. D., Gustafsson, T., Copel, M. and Tmrnqvist, E., Nucl. Instr. and Meth. B16 383 (1986).CrossRefGoogle Scholar
9. Mendenhall, M. H. and Weller, R. A.: Nucl. Instr. and Meth. B40/41 1239 (1989).CrossRefGoogle Scholar
10. Mendenhall, M. H. and Weller, R. A.: Nucl. Instr. and Meth. B47 193 (1990).CrossRefGoogle Scholar
11. Radzimski, Z. J., Yokoyama, S., Ishibashi, K., Nishiyama, F. and Hirose, M., Jpn. J. Appl. Phys. 32, 962 (1993).CrossRefGoogle Scholar
12. Hiraki, A., Lugujjo, E., Nicolet, M. -A. and Mayer, J. W., Phys. Stat. Sol. (a) 7, (1971) 401.CrossRefGoogle Scholar
13. Morehead, F. F., Crowder, B. L. and Title, R. J., J. Appl. Phys. 54, 1112 (1972).CrossRefGoogle Scholar
14. Yokoyama, S., Radzimski, Z. J., Ishibashi, K., Miyazaki, S. and Hirose, M., Proc. of the 15th Symp. on Dry Process 73 (1993).Google Scholar