Hostname: page-component-8448b6f56d-c4f8m Total loading time: 0 Render date: 2024-04-19T17:55:24.877Z Has data issue: false hasContentIssue false

Percolation in Multi-Wall Carbon Nanotube-Epoxy Composites Influence of processing parameters, nanotube aspect ratio and electric fields on the bulk conductivity

Published online by Cambridge University Press:  01 February 2011

Jan K.W. Sandler
Affiliation:
Department of Materials Science and Metallurgy, University of Cambridge, UK
Alan H. Windle
Affiliation:
Department of Materials Science and Metallurgy, University of Cambridge, UK
Christian A. Martin
Affiliation:
Department of Materials Science and Metallurgy, University of Cambridge, UK Materials in Electrical Engineering and Optics, TU Hamburg-Harburg, Germany
Matthias-Klaus Schwarz
Affiliation:
Materials in Electrical Engineering and Optics, TU Hamburg-Harburg, Germany
Wolfgang Bauhofer
Affiliation:
Materials in Electrical Engineering and Optics, TU Hamburg-Harburg, Germany
Karl Schulte
Affiliation:
Polymer Composites, TU Hamburg-Harburg, Germany
Milo S.P. Shaffer
Affiliation:
Department of Chemistry, Imperial College, London, UK
Get access

Abstract

A simple mechanical stirring process leads to charge-stabilised dispersions of aligned, substrate-grown, CVD-grown multi-wall carbon nanotubes in an epoxy resin. Subsequent sample processing, after the addition of the hardener, can be used to induce the nanotube agglomeration necessary to achieve electrically conductive bulk composites at low loading fractions. Both the nanotube percolation threshold and the resulting bulk conductivity can be adjusted by selection of suitable processing parameters and nanotube aspect ratio. This behaviour of aligned CVD-grown multi-wall carbon nanotubes allows lower electrical percolation thresholds than are possible with entangled multi-wall carbon nanotubes, single-wall carbon nanotube bundles, or carbon black in an epoxy matrix. Furthermore, the application of electric fields during composite processing induces the formation of aligned multi-wall carbon nanotube networks between electrodes dipped into the dispersion. Such composites show an electrical conductivity above the anti-static level and retain a degree of optical transmissivity.

Type
Research Article
Copyright
Copyright © Materials Research Society 2004

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Sandler, J., Shaffer, M.S.P., Prasse, T., Bauhofer, W., Schulte, K., Windle, A.H., Polymer 40, 5967 (1999).Google Scholar
2. Singh, C., Shaffer, M.S.P., Windle, A.H., Carbon 41, 359 (2003).Google Scholar
3. Martin, C.A., Sandler, J.K.W., Shaffer, M.S.P., Schwarz, M.-K., Bauhofer, W., Schulte, K., Windle, A.H., Comp. Sci. Tech., (2003) (accepted).Google Scholar
4. Martin, C.A., Sandler, J.K.W., Windle, A.H., Schwarz, M.-K., Bauhofer, W., Schulte, K., Shaffer, M.S.P., Polymer, (2003) (submitted).Google Scholar
5. Schueler, R, Petermann, J., Schulte, K., Wentzel, H.-P., J. Appl. Polym. Sci. 63, 1741 (1997).Google Scholar
6. Prasse, T., Flandin, L., Schulte, K., Bauhofer, W., Appl. Phys. Lett. 72, 2903 (1998)Google Scholar
7. Schwarz, M.-K., Bauhofer, W., Schulte, K., Polymer 43, 3079 (2002).Google Scholar
8. Sandler, J.K.W., Kirk, J.E., Kinloch, I.A., Shaffer, M.S.P., Windle, A.H., Polymer 44, 5893 (2003).Google Scholar
9. Barrau, S., Demont, P., Peigny, A., Laurent, C., Lacabanne, C., Macromolecules 36, 5187 (2003).Google Scholar
10. Celzard, A., McRae, E., Deleuze, C., Dufort, M., Furdin, G., Marêché, J.F., Phys. Rev. B 53, 6209 (1996).Google Scholar
11. Kilbride, B.E., Coleman, J.N., Fraysse, J., Fournet, P., Cadek, M., Drury, A., Hutzler, S., Roth, S., Blau, W.J., J. Appl. Phys. 92, 4024 (2002).Google Scholar
12. Park, C., Ounaies, Z, Watson, K.A., Crooks, R.E., Smith, J. Jr, Lowther, S.E., Connell, J.W., Siochi, E.S., Harrison, J.S., Clair, T.L.St., Chem. Phys. Lett. 364, 303 (2002).Google Scholar