Hostname: page-component-76fb5796d-22dnz Total loading time: 0 Render date: 2024-04-25T16:49:50.981Z Has data issue: false hasContentIssue false

Oxide Reduction in Advanced Metal Stacks for Microelectronic Applications

Published online by Cambridge University Press:  01 February 2011

Wentao Qin
Affiliation:
DigitalDNA™ Labs, Motorola Inc., Tempe, AZ 85284, USA
Alex A. Volinsky
Affiliation:
Department of Mechanical Engineering, University of South Florida
Dennis Werho
Affiliation:
DigitalDNA™ Labs, Motorola Inc., Tempe, AZ 85284, USA
N. David Theodore
Affiliation:
DigitalDNA™ Labs, Motorola Inc., Tempe, AZ 85284, USA
Get access

Abstract

Aluminum and copper are widely used for microelectronic interconnect applications. Interfacial oxides can cause device performance degradation and failure by significantly increasing electrical resistance. Interfacial oxide layers found in Al/Ta and Ta/Cu metal stacks were studied using Transmission Electron Microscopy (TEM) combined with Energy Dispersive Spectroscopy (EDS) and Parallel Electron Energy Loss Spectroscopy (PEELS). The analysis indicates that the observed interfacial oxide layers, Al2O3 and mainly Ta2O5, result from spontaneous reductions of Ta oxide and Cu oxide, respectively. Thermodynamics enables interpretation of the results.

Type
Research Article
Copyright
Copyright © Materials Research Society 2004

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Grovenor, C. R. M., Microelectronic Materials (IOP Publishing, Philadelphia, PA, 1989) p. 239.Google Scholar
2. Murarka, S. P., Peckerar, M. C., Electronic Materials: Science and Technology (Academic Press, San Diego, CA, 1989) p. 284.Google Scholar
3. Koschier, L. M., Wenham, S. R., in Record of the Twenty-Eighth IEEE Photovoltaic Specialists Conference – 2000 (IEEE - Piscataway, NJ, USA, 2000), p. 407.Google Scholar
4. Taubenblatt, M. A. and Helms, C.R., J. Appl. Phys. 53(9) 6308(1982).Google Scholar
5. Liehr, M., LeGoues, F. K., Rubloff, G. W., Ho, P. S., J. Vac. Sci. Technol. A 3 (3) 983 (1985).Google Scholar
6. Ohwaki, T., Aoki, K., Yoshida, T., Hashimoto, S., Mitsushima, Y., Taha, Y., Surface Science, 496, 433 (1999).Google Scholar
7. Laurent, Ch., Blaszczyk, Ch., Brieu, M., Rousset, A., Nanostructured Materials 6 317(1995).Google Scholar
8. Naidich, Yu. V., Prog. Surf. Membrane Sci., 14, 353 (1981).Google Scholar
9. Lipkin, D. M., Israelachvili, J. N., and Clarke, D. R., Philosophical Magazine A, 76, 715 (1997).Google Scholar
10. Diebold, U., Pan, J-M, and Madey, T. E., Surf. Sci., 333, 845 (1995).Google Scholar
11. Volinsky, A. A., “A Comparison Study of Ti/GaAs Ti/Si Fracture, Mechanics of Thin Films and Other Small Structures Symposium”, presented at the 14th U.S. National Congress of Theoretical and Applied Mechanics, Blacksburg, Virginia, (2002) (unplublished).Google Scholar
12. Cliff, G., and Lorimore, G., Journal of Microscopy, 103 203 (1975).Google Scholar
13. Joy, D. in Principles of Analytical Electron Microscopy, edited by Joy, D., Romig, A. Jr, and Goldstein, J. (Plenum Press, New York and London, 1986), p. 155.Google Scholar
14. Vincent Crist, B. in Monochromatic XPS Spectra: The Elements and Native Oxides, (Wiley, Chichester, England, 2000) p. 478.Google Scholar
15. Himpsel, , et al. , Phys. Rev. B, 30 (12), 7236 (1984).Google Scholar
16. Greenwood, N. N. & Earnshaw, A. in Chemistry of the Elements (Butterworth-Heinemann, Oxford, 1997), p. 981.Google Scholar
17. Epstein, L. F. in Ceramic Age, (April 1954) 37.Google Scholar
18. Egerton, R. in Electron Energy-Loss Spectroscopy in the Electron Microscope (Plenum Press, New York and London, 1996), p. 280.Google Scholar
19. Ahn, C. and Krinavek, O., in EELS Atlas (1983).Google Scholar