Hostname: page-component-cd9895bd7-8ctnn Total loading time: 0 Render date: 2024-12-26T13:31:56.105Z Has data issue: false hasContentIssue false

Oxidation of uranium nanoparticles produced via pulsed laser ablation

Published online by Cambridge University Press:  26 February 2011

Tom Trelenberg
Affiliation:
trelenberg1@llnl.gov, Lawrence Livermore National Lab, 7000 East Avenue, L-356, Livermore, CA, 94550, United States
Stephen C Glade
Affiliation:
sglade@alumni.caltech.edu, Lawrence Livermore National Lab, Materials Science and Technology, United States
James G Tobin
Affiliation:
tobin1@llnl.gov, Lawrence Livermore National Lab, Materials Science and Technology, United States
Thomas E Felter
Affiliation:
felter1@llnl.gov, Lawrence Livermore National Lab, Materials Science and Technology, United States
Alex V Hamza
Affiliation:
hamza1@llnl.gov, Lawrence Livermore National Lab, Materials Science and Technology, United States
Get access

Abstract

An experimental apparatus designed for the synthesis, via pulsed laser deposition, and analysis of metallic nanoparticles and thin films of plutonium and other actinides was tested on depleted uranium samples. Five nanosecond pulses from a Nd:YAG laser produced films of ∼1600 Å thickness that were deposited showing an angular distribution typical of thermal ablation. The films remained contiguous for many months in vacuum but blistered due to induced tensile stresses several days after exposure to air. The films were allowed to oxidize from the residual water vapor within the chamber (2×10-10 Torr base pressure). The oxidation was monitored by in-situ analysis techniques including x-ray photoelectron spectroscopy (XPS), ultraviolet photoelectron spectroscopy (UPS), and scanning tunneling microscopy (STM) and followed Langmuir kinetics.

Type
Research Article
Copyright
Copyright © Materials Research Society 2006

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Glade, S.C., Trelenberg, T.W., Tobin, J.G., Sterne, P.A., and Hamza, A.V. in Plutonium Futures-The Science, ed. Jarvinen, G. D. (AIP Conf. Proc. 673, Melville, NY, 2003) pp. 148–149.Google Scholar
2. Trelenberg, T. W., Glade, S. C., Felter, T. E., Tobin, J. G., and Hamza, A. V., Rev. of Sci. Inst., 75, 713 (2004).Google Scholar
3. Chrisey, D. B. and Hubler, G. K., eds., Pulsed Laser Deposition of Thin Films, (Wiley-Interscience, New York, 1994).Google Scholar
4. Tench, R. J., “The nucleation and growth of uranium on the basal plane of graphite studied by scanning tunneling microscopy”, Ph.D. thesis, University of California, Davis, report number: UCRL-LR-112417 (1992).Google Scholar
5. Gouder, T., Colmenares, C., Naegele, J., Verbist, J., Surf. Sci. 235 (1989) 280286.Google Scholar
6. Joyce, J. J., Arko, A. J., Morales, L. A., Los Alamos Science 26 (2000) 186187.Google Scholar
7. Gouder, T. H., Colmenares, C. A., Surf. Sci. 341 (1995) 5161.Google Scholar
8. Gouder, T., Surf. Sci. 382 (1997) 2634.Google Scholar
9. Lunney, J. G., Appl. Surf. Sci. 86 (1995) 7985.Google Scholar
10. Dam, B., Rector, H. J., Johansson, J., Kars, S., Griessen, R., Appl. Surf. Sci. 96–98 (1996) 679684.Google Scholar
11. Trelenberg, T. W., Dinh, L. N., Saw, C. K., Stuart, B. C., Balooch, M., Appl. Surf. Sci. 221/1–4 (2004) 364369 Google Scholar
12. Dinh, L. N., Hayes, S. E., Wynne, A. E., Wall, M. A., Saw, C. K., Stuart, B. C., Balooch, M., Paravastu, A. K., Reimer, J. A., J. Mater. Sci. 37 (2002) 39533958.Google Scholar
13. Trelenberg, T. W., Dinh, L. N., Stuart, B. C., Balooch, M., Appl. Surf. Sci. 229 (2004) 268274.Google Scholar