Hostname: page-component-848d4c4894-r5zm4 Total loading time: 0 Render date: 2024-07-01T17:52:35.225Z Has data issue: false hasContentIssue false

Origins of Light Emission and Efficiency Saturation of the Photoluminescence of GaN Nanocrystallites

Published online by Cambridge University Press:  01 February 2011

Xiang-Bai Chen
Affiliation:
Department of Physics, University of Idaho, Moscow, ID 83844–0903
John L. Morrison
Affiliation:
Department of Physics, University of Idaho, Moscow, ID 83844–0903
Margaret K. Penner
Affiliation:
Department of Physics, University of Idaho, Moscow, ID 83844–0903
Jennifer Elle
Affiliation:
Department of Physics, University of Idaho, Moscow, ID 83844–0903
Leah Bergman
Affiliation:
Department of Physics, University of Idaho, Moscow, ID 83844–0903
Andrew P. Purdy
Affiliation:
US Naval Research Laboratory, Chemistry Division, Washington DC 20375
Get access

Abstract

The photoluminescence (PL) properties of GaN nanorods were studied utilizing UV micro-photoluminescence. The room temperature PL of the GaN nanorods exhibits one strong emission line. The PL intensity as a function of the laser power was investigated in order to determine whether this emission originates from an excitonic or a bandgap recombination process. Our analysis indicates that the PL of the rods is excitonic-like and very similar to the behavior of the free exciton A in GaN thin films. However, for a relatively large and compact ensemble of rods, the PL intensity exhibits a significant saturation occurring already at relatively low laser power. We attribute the intensity saturation to the laser heating and heat trapping which takes place in the enclosure of the ensemble.

Type
Research Article
Copyright
Copyright © Materials Research Society 2004

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Semiconductors and semimetals, Vol. 50 and 57, edited by Pankove, J. I. and Moustakas, T. D. (Academic, San Diego, 1999).Google Scholar
2. Morkoc, H., Strite, S., Gao, G. B., Lin, M. E., Sverdlov, B., and Burns, M., J. Appl. Phys. 76, 1363 (1994).Google Scholar
3. Dingle, R., Sell, D. D., Stokowski, S. E., and Ilegems, M., Phys. Rev. B 4, 1211 (1971).Google Scholar
4. Monemar, B., Phys. Rev. B 10, 676 (1974).Google Scholar
5. Pankove, J. I., Berkeyheiser, J. E., Maruska, H. P., and Wittke, J., Solid State Commun. 8, 1051 (1970).Google Scholar
6. Purdy, A. P., Chem. Matter. 11, 1648 (1999).Google Scholar
7. a) Bergman, L., Chen, X. B., Feldmeier, J., and Purdy, A. P., Appl. Phys. Lett. 83, 764 (2003).Google Scholar
b) Bergman, L., et. al. MRS Proceedings V. 776, Q1.1 (spring 2003)Google Scholar
8. Han, W. -Q., and Zettl, A., Appl. Phys. Lett. 81, 5051 (2002).Google Scholar
9. Lee, M. W., Twu, H. Z., Chen, C. -C., and Chen, C. -H., Appl. Phys. Lett. 79, 3693 (2001).Google Scholar
10. Duan, X. and Lieber, C. M., J. Am. Chem. Soc. 122, 188 (2000).Google Scholar
11. Jin, Shirong, Zheng, Yanlan, and Li, Aizhen, J. Appl. Phys. 82, 3870 (1997).Google Scholar
12. Taguchi, T., Shirafuji, J., and Inuishi, Y., Phys. Status Solidi B 68, 727 (1975).Google Scholar
13. Cooper, D. E., Bajaj, J., and Newmann, P. R., J. Cryst. Growth 86, 544 (1988).Google Scholar
14. Feng, Z. C., Mascarenhas, A., and Choyke, W. J., J. Lumin. 35, 329 (1986).Google Scholar
15. Kim, Q. and Langer, D. W., Phys. Status Solidi B 122, 263 (1984).Google Scholar
16. Schmidt, T., Lischka, K., and Zulehner, W., Phys. Rev. B 45, 8989 (1992).Google Scholar
17. Fouquet, J. E. and Siegman, A. E., Appl. Phys. Lett. 46, 280 (1984).Google Scholar
18. Pankove, J. I., Optical processes in semiconductors (Dover publications, New York), pp. 166.Google Scholar
19. Rodina, A. V., Dietrich, M., Göldner, A., Eckey, L., Hoffmann, A., Efros, Al. L., Rosen, M., and Meyer, B. K., Phys. Rev. B 64, 115204 (2001).Google Scholar
20. Weisbuch, Claude, Vinter, Borge, Quantum semiconductor structures (Academic Press, INC. Boston, 1991).Google Scholar
21. Murugkar, S., Merlin, R., Botchkarev, A., Salvador, A., Morkoc, H.: J. Appl. Phys. 77, 6042 (1995).Google Scholar
22. Bergman, L., Dutta, M., and Nemanich, R.J., “Raman Analysis of Wide Band Gap Nitrides; Film, Crystals, and Superlatices”, In Raman Scattering in Materials Science Science p. 273 (Editors: Merlin, R. and Weber, W.H., Springer Verlag 2000).Google Scholar