Hostname: page-component-76fb5796d-zzh7m Total loading time: 0 Render date: 2024-04-25T08:45:43.576Z Has data issue: false hasContentIssue false

Oriented Si and Ge Nanocrystals Formed in Al2O3 by Ion Implantation and Annealing

Published online by Cambridge University Press:  22 February 2011

C.W. White
Affiliation:
Oak Ridge National Laboratory, P. O. Box 2008, Oak Ridge, Tennessee 37831-6057
J.D. Budai
Affiliation:
Oak Ridge National Laboratory, P. O. Box 2008, Oak Ridge, Tennessee 37831-6057
S.P. Withrow
Affiliation:
Oak Ridge National Laboratory, P. O. Box 2008, Oak Ridge, Tennessee 37831-6057
S.J. Pennycook
Affiliation:
Oak Ridge National Laboratory, P. O. Box 2008, Oak Ridge, Tennessee 37831-6057
D.M. Hembree
Affiliation:
Oak Ridge Y-12 Plant, P. O. Box 2009, Oak Ridge, Tennessee 37831
D.S. Zhou
Affiliation:
Oak Ridge National Laboratory, P. O. Box 2008, Oak Ridge, Tennessee 37831-6057
T. Vo-Dinh
Affiliation:
Oak Ridge National Laboratory, P. O. Box 2008, Oak Ridge, Tennessee 37831-6057
R.H. Magruder
Affiliation:
Vanderbilt University, Nashville, Tennessee
Get access

Abstract

Ion implantation followed by thermal annealing in a reducing atmosphere has been used to create a high density of oriented Si and Ge nanocrystals in (0001) AI2O3. Both types of nanocrystals are three-dimensionally aligned with respect to the AI2O3 matrix, but the orientational relationships are different, and the two types of nanocrystals have different shapes in AI2O3. Implantation of Si and Ge in fused silica also produces nanocrystals, but in this case, the nanocrystals are randomly oriented relative to each other.

Type
Research Article
Copyright
Copyright © Materials Research Society 1994

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1 Iyer, S.S. and Xie, Y.H., Science 260, 40 (1993).Google Scholar
2 Canham, L.T., Appl. Phys. Lett. 57, 1046 (1990).Google Scholar
3 Letmann, V. and Gösel, U., Appl. Phys. Lett. 58, 856 (1991).Google Scholar
4 Takagi, H., Ogawa, H., Yamazaki, Y., Ishizaki, A., and Nakagiri, T., Appl. Phys. Lett. 56, 2379 (1990).Google Scholar
5 Maeda, Y., Tsukamoto, N., Yazawa, Y., Kanemitsu, Y., and Masumoto, Y., Appl. Phys. Lett. 59, 3168(1991).Google Scholar
6 Saunders, W.A. et al. , Appl. Phys. Lett. 63, 1549 (1993).Google Scholar
7 Paine, D.C., Caragianis, C., and Shigesato, Y., Appl. Phys. Lett. 60, 2886 (1992).Google Scholar
8 Sklad, P.S., McHargue, C.J., White, C.W., and Farlow, G.C., J. Mat. Sci. 27, 5895 (1992).Google Scholar
9 Farlow, G.C., Sklad, P.S., White, C.W., and McHargue, C.J., J. Mat. Res. 5, 1502 (1990).Google Scholar
10 White, C.W., McHargue, C.J., Sklad, P.S., Boatner, L.A., and Farlow, G.C., Mat. Sci. Reports 4, 43 (1989).Google Scholar
11 Ohkubo, M. and Suzuki, N., Phil. Mag. Lett. 57, 261 (1988).Google Scholar
12 Ohkubo, M., Hioki, T., and Kawamoto, J., J. Appl. Phys. 60, 1325 (1986).Google Scholar
13 Ohkubo, M., Hioki, T., Suzuki, N., Ishiguro, T., and Kawamoto, J., Nucl. Inst. & Methods B 39, 675(1989).Google Scholar
14 Ramabadran, U.B., Jackson, H.E., and Farlow, G.C., Appl. Phys. Lett. 55, 1199 (1989).Google Scholar