Hostname: page-component-77c89778f8-7drxs Total loading time: 0 Render date: 2024-07-19T00:56:11.079Z Has data issue: false hasContentIssue false

Organic/Inorganic Hybrid Sol-Gel Derived Hard Coatings on Plastics

Published online by Cambridge University Press:  10 February 2011

C. M. Chan
Affiliation:
Department of Materials Science and Engineering, University of Washington, Seattle, WA 98195
G. Z. Cao
Affiliation:
Department of Materials Science and Engineering, University of Washington, Seattle, WA 98195
H. Fong
Affiliation:
Department of Materials Science and Engineering, University of Washington, Seattle, WA 98195
M. Sarikaya
Affiliation:
Department of Materials Science and Engineering, University of Washington, Seattle, WA 98195
T. Robinson
Affiliation:
Korry Electronics, Co., Seattle, WA 98109
L. Nelson
Affiliation:
Korry Electronics, Co., Seattle, WA 98109
Get access

Abstract

We investigated sol-gel derived silica based hard coatings on modified polyester substrates. The silica network was modified by incorporating an organic component and adding transition metal oxides. These modifications resulted in tailored thermal, optical and mechanical properties of the coatings. Various low temperature densification techniques were studied including appropriate sol-preparation procedure, enhanced solvent evaporation, ultraviolet (UV) irradiation, and low-temperature (below 150°C) heating. Oxygen plasma etching was applied to improve the adhesion of the sol-gel coatings on the plastic surface. Nanoindentation analysis revealed that the sol-gel coatings have a surface hardness up to 2.5±0.27 GPa, approximately an order of magnitude higher than that of the plastic surface.

Type
Research Article
Copyright
Copyright © Materials Research Society 1999

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Senkevich, J. J. and Desu, S. B., Chem. Vap. Deposition 4, 92 (1998).10.1002/(SICI)1521-3862(199805)04:03<92::AID-CVDE92>3.0.CO;2-C3.0.CO;2-C>Google Scholar
2. Hu, I. F., O’Connor, P. J., Tou, J. C., Sedon, J. H., Bales, S. E., Perettie, D. J., US Patent 5,718,967, Febuary 17, 1998.Google Scholar
3. Sliemers, F. A., Nandi, U. S., Behrer, P. C., Nance, G. P., US Patent No. 4 778 721, October 18, 1988.Google Scholar
4. Shin, H., Collins, R. J., DeGuire, M. R., Heuer, A. H. and Sukenik, C. N., J. Mater. Res. 10, 692 (1995).10.1557/JMR.1995.0692Google Scholar
5. Shin, H., Collins, R. J., DeGuire, M. R., Heuer, A. H. and Sukenik, C. N., J. Mater. Res. 10, 699 (1995).10.1557/JMR.1995.0699Google Scholar
6. Calvert, P. and Rieke, P., Chem. Mater. 8, 1715 (1996).10.1021/cm960126oGoogle Scholar
7. Tarasevich, B. J., Rieke, P. C. and Liu, J., Chem. Mater. 8, 292 (1996).10.1021/cm940391eGoogle Scholar
8. Bunker, B. C., Rieke, P. C., Tarasevich, B. J., Bentjen, S. B., Fryxell, G. E. and Campbell, A. A., Science 264, 48 (1994).10.1126/science.264.5155.48Google Scholar
9. Yoldas, B. E. and Lin, C. C., US Patent 4,753,827, June 28, 1988.Google Scholar
10. Wen, J. and Wilks, G. L., J. Inorganic and Organometallic Polymers 5, 343 (1995).10.1007/BF01193060Google Scholar
11. Wen, J., Vasudevan, V. J. and Wilkes, G. L., J. Sol-Gel Sci. Technol. 5, 115 (1995).10.1007/BF00487727Google Scholar
12. Gupta, N., Sinha, T. J. M. and Varma, I. K., Indian J. Chem. Technol. 4, 130 (1997).Google Scholar
13. Schmidt, H. and Walter, H., J. Non-Cryst. Solids 121, 428 (1990).10.1016/0022-3093(90)90171-HGoogle Scholar
14. Francis, L. F., Mater. Manufacturing Proc. 12, 9631015 (1997).10.1080/10426919708935200Google Scholar
15. Hench, L. L. and West, J. K., ed., Chemical Processing of Advanced Materials, John Wiley & Sons, New York, 1992.10.1016/0261-3069(92)90248-GGoogle Scholar
16. Yoldas, B. E. and Lin, C. C., US Patent 4,754,012, June 28, 1988.Google Scholar
17. Ashley, C. S. and Reed, S. T., US Patent 4,929,278, May 29, 1990.Google Scholar
18. McGrinniss, V. D., Prog. Organic Caotings, 27, 153161 (1996).10.1016/0300-9440(95)00531-5Google Scholar
19. Brinker, C. J. and Hurd, A. J., J. Phys. III, France 4, 1231 (1994).10.1051/jp3:1994198Google Scholar
20. For example, Dow Coming ARCTM abrasion resistant coatings.Google Scholar
21. Oliver, W. C. and Pharr, G. M., J. Mater. Res. 4, 1564 (1992).10.1557/JMR.1992.1564Google Scholar
22. Innocenz, P., Abdirashid, M. O. and Guglielmi, M., J. Sol-Gel Sci. Techn. 3, 47 (1994).10.1007/BF00490148Google Scholar
23. Matsuda, A., Matsuno, Y., Tatsumisago, M. and Minami, T., J. Amer. Ceram. Soc. 81, 2849 (1998).10.1111/j.1151-2916.1998.tb02705.xGoogle Scholar
24. Cao, G. Z., Lu, Y. F., Delattre, L., Brinker, C. J., and Lopez, G. P., Advanced Materials 8, 588 (1996).10.1002/adma.19960080713Google Scholar
25. Belleville, P., Prene, P., Petit, S., and Pieri, R., SID 97 Digest, 1997, p. 10651068.Google Scholar
26. Brinker, C. J. and Scherer, G. W., Sol-Gel Science: The Physics and Chemistry of Sol-Gel Processing, Academic Press, San Diego, CA, 1990.Google Scholar
27. Mencik, J., Munz, D., Quandt, E. and Weppelmann, E. R., J. Mater. Res. 12, 2475 (1997).10.1557/JMR.1997.0327Google Scholar
28. Imai, H., Yasumori, M., Hirashima, H., Awazu, K., and Onuki, H., J. Appl. Phys. 79, 8304 (1996).10.1063/1.362541Google Scholar
29. Egitto, F. D. and Matienzo, L. J., IBM J. Res. Develop. 38, 423 (1994).10.1147/rd.384.0423Google Scholar
30. Gerenser, L. J., J. Adhesion Sci. Technol. 7, 1019 (1993).10.1163/156856193X00556Google Scholar