Hostname: page-component-848d4c4894-cjp7w Total loading time: 0 Render date: 2024-06-25T03:28:23.186Z Has data issue: false hasContentIssue false

Optimization of GaN/AlGaN Quantum Wells for Ultraviolet Emitters

Published online by Cambridge University Press:  01 February 2011

A. Hangleiter
Affiliation:
Institut für Technische Physik, Technische Universität Braunschweig, Mendelssohnstr. 2, D-38106 Braunschweig, Germany E-mail: a.hangleiter@tu-bs.de
D. Fuhrmann
Affiliation:
Institut für Technische Physik, Technische Universität Braunschweig, Mendelssohnstr. 2, D-38106 Braunschweig, Germany E-mail: a.hangleiter@tu-bs.de
M. Greve
Affiliation:
Institut für Technische Physik, Technische Universität Braunschweig, Mendelssohnstr. 2, D-38106 Braunschweig, Germany E-mail: a.hangleiter@tu-bs.de
U. Rossow
Affiliation:
Institut für Technische Physik, Technische Universität Braunschweig, Mendelssohnstr. 2, D-38106 Braunschweig, Germany E-mail: a.hangleiter@tu-bs.de
Get access

Abstract

We have studied GaN/AlGaN and GaInN/GaN quantum well structures grown on sapphire and SiC substrates using low-pressure MOVPE. The emission wavelength of the GaN/AlGaN QW's was varied in the 320–400 nm range and that of the GaInN/GaN QW's in the 390–480 nm range, by adjusting the QW width. Using temperature dependent resonant-excitation photoluminescence measurements we have determined the internal quantum efficiency (IQE) and analyzed its temperature dependence. For the GaN/AlGaN QW's we achieve a reasonable IQE of in excess of 5 % only at fairly high excitation power, while GaInN/GaN QW's provide IQE's of up to 46 % at rather low power density, indicating a much stronger role of defects for the former. While thermal activation energies are dominated by intrinsic mechanisms for GaInN/GaN QW's, lower activation barriers evident from the GaN/AlGaN data also hint at a more import role of defects.

Type
Research Article
Copyright
Copyright © Materials Research Society 2004

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Yamada, M., Mitani, T., Narukawa, Y., Shioji, S., Niki, I., Sonobe, S., Deguchi, K., Sano, M., and Mukai, T., Jpn. J. Appl. Phys. 41, L1431 (2002).Google Scholar
2. Nishida, T., Saito, H., and Kobayashi, N., Appl. Phys. Lett. 78, 3927 (2001).Google Scholar
3. Takeuchi, T., Sota, S., Katsuragawa, M., Komori, M., Takeuchi, H., Amano, H., and Akasaki, I., Jpn. J. Appl. Phys. 36, L382 (1997).Google Scholar
4. Bernardini, F., Fiorentini, V., and Vanderbilt, D., Phys. Rev. B 56, R10024 (1997).Google Scholar
5. Im, J. S., Kollmer, H., Off, J., Sohmer, A., Scholz, F., and Hangleiter, A., Phys. Rev. B 57, R9435 (1998).Google Scholar
6. Hangleiter, A., Im, J. S., Off, J., and Scholz, F., phys. stat. sol. (b) 216, 427 (1999).Google Scholar
7. Hangleiter, A., Hitzel, F., Lahmann, S., and Rossow, U., Appl. Phys. Lett. 83, 1169 (2003).Google Scholar
8. Chichibu, S., Azuhata, T., Sota, T., and Nakamura, S., Appl. Phys. Lett. 69, 4188 (1996).Google Scholar
9. Narukawa, Y., Kawakami, Y., Funato, M., Fujita, S., Fujita, S., and Nakamura, S., Appl. Phys. Lett. 70, 981 (1997).Google Scholar
10. Logothetidis, S., Petalas, J., Cardona, M., and Moustakas, T. D., Phys. Rev. B 50, 18017 (1994).Google Scholar
11. Eliseev, P. G., Perlin, P., Lee, J., and Osinski, M., Appl. Phys. Lett. 71, 569 (1997).Google Scholar
12. Lahmann, S., Hitzel, F., Rossow, U., and Hangleiter, A., phys. stat. sol. (c) 0, 2202 (2003).Google Scholar
13. Michler, P., Hangleiter, A., Moser, M., Geiger, M., and Scholz, F., Phys. Rev. B. 46, 7280 (1992).Google Scholar