Hostname: page-component-848d4c4894-r5zm4 Total loading time: 0 Render date: 2024-06-23T05:20:27.270Z Has data issue: false hasContentIssue false

Optimisation of Microcrystaline Silicon Deposited by Expanding Thermal Plasma Chemical Vapor Deposition for Solar-Cell Application

Published online by Cambridge University Press:  01 February 2011

Raul Jimenez Zambrano
Affiliation:
r.jimenezzambrano@ewi.tudelft.nl, Delft University of Technology, Department of Micro-electronics,, Feldmannweg 17, Delft, 2628 CT, Netherlands
R.A.C.M.M. van Swaaij
Affiliation:
R.A.C.M.M.vanSwaaij@tudelft.nl, Delft University of Technology,, Department of Micro-electronics, DIMES-ECTM, P.O. Box 5053, Delft, NL-2600 GB, Netherlands
M.C.M. van de Sanden
Affiliation:
M.C.M.v.d.Sanden@tue.nl, Eindhoven University of Technology, Department of Applied Physics, P.O. Box 513, Eindhoven, NL-5600 MB, Netherlands
Get access

Abstract

The causes for the porosity of the microcrystalline material deposited by the expanding thermal plasma (ETP) chemical vapor deposition (CVD) technique have been investigated through IR-absorption measurements. The role of impinging ions on the structure of the material is discussed in relation to the hydrogen bounding configuration (microcrystalline factor). The ion energy is controlled through external RF biasing. Correlation between biasing and reduction of porosity is presented. The influence of high deposition pressure is as well studied, related with changes in a-Si structure.

Type
Research Article
Copyright
Copyright © Materials Research Society 2007

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1 Matsuda, A., J. Non-Cryst. Solids 338–340, 1 (2004).Google Scholar
2 Gordijn, A., Hodakova, L., Rath, J. K., and Schropp, R. E. I., J. Non-Cryst. Solids 352, 1868 (2006).Google Scholar
3 Kondo, M., Nishimoto, T., Takai, M., Suzuki, S., Nasuno, Y., and Matsuda, A., Tech. Dig. Intern. PVSEC-12, Jeju, Korea, 41 (2001).Google Scholar
4 Smit, C., Hamers, E. A. G., Korevaar, B. A., Swaaij, R. A. C. M. M. van, and Sanden, M. C. M. van de, J. Non-Cryst. Solids 299-302, 98 (2002).Google Scholar
5 Smit, C., Swaaij, R. A. C. M. M. van, Hamers, E. A. G., and Sanden, M. C. M. van de, J. Appl. Phys. 96, 4076 (2004).Google Scholar
6 Swaaij, R. A. C. M. M. van, Zambrano, R. Jiménez, Smit, C., and Sanden, M. C. M. van de, J. Non-Cryst. Solids 352, 933 (2006).Google Scholar
7 Smit, C., Klaver, A., Korevaar, B. A., Petit, A. M. H. N., Williamson, D. L., Swaaij, R. A. C. M. M. van, and Sanden, M. C. M. van de, Thin Solid Films 491, 280 (2005).Google Scholar
8 Zanzucchi, P. J., in Semiconductors and Semimetals, 21, chapter 4 (1984).Google Scholar
9 Agarwal, S., Takano, A., Sanden, M. C. M. van de, Maroudas, D., and Aydil, E. S., J. Chem. Phys. 117, 10805 (2002).Google Scholar
10 Smets, A. H. M., Kessels, W. M. M., and Sanden, M. C. M. van de, Appl. Phys. Lett. 86, 041909 (2005).Google Scholar
11 Petit, A. M. H. N., Ph. D. thesis, Delft University of Technology, 2006.Google Scholar