Hostname: page-component-76fb5796d-5g6vh Total loading time: 0 Render date: 2024-04-25T09:32:08.169Z Has data issue: false hasContentIssue false

Optical Characterization of Si Nanowires: Dependence with Substrate Orientation and Light Polarization

Published online by Cambridge University Press:  21 July 2014

Juan A. Badán
Affiliation:
Instituto de Física & CINQUIFIMA, Facultad de Ingeniería, Universidad de la República, Julio H. Reissig 565, CC 30, CP 11000, Montevideo, Uruguay.
Ricardo E. Marotti
Affiliation:
Instituto de Física & CINQUIFIMA, Facultad de Ingeniería, Universidad de la República, Julio H. Reissig 565, CC 30, CP 11000, Montevideo, Uruguay.
Enrique A. Dalchiele
Affiliation:
Instituto de Física & CINQUIFIMA, Facultad de Ingeniería, Universidad de la República, Julio H. Reissig 565, CC 30, CP 11000, Montevideo, Uruguay.
Daniel Ariosa
Affiliation:
Instituto de Física & CINQUIFIMA, Facultad de Ingeniería, Universidad de la República, Julio H. Reissig 565, CC 30, CP 11000, Montevideo, Uruguay.
Francisco Martín
Affiliation:
Lab. de Materiales y Superficies (Unidad Asociada al CSIC), Dptos. de Física Aplicada & Ingeniería Química, Universidad de Málaga, Campus de Teatinos s/n, E29071 Málaga, Spain.
Dietmar Leinen
Affiliation:
Lab. de Materiales y Superficies (Unidad Asociada al CSIC), Dptos. de Física Aplicada & Ingeniería Química, Universidad de Málaga, Campus de Teatinos s/n, E29071 Málaga, Spain.
José R. Ramos-Barrado
Affiliation:
Lab. de Materiales y Superficies (Unidad Asociada al CSIC), Dptos. de Física Aplicada & Ingeniería Química, Universidad de Málaga, Campus de Teatinos s/n, E29071 Málaga, Spain.
Get access

Abstract

Optical properties of Si nanowire arrays (SiNWs) prepared on p-doped Si(111) and Si(100) substrates are studied. The SiNWs were synthesized by self-assembly electroless metal deposition nanoelectrochemistry in an ionic silver HF solution through selective etching. Total reflectance (Rt) and total diffuse reflectance (Rdt) of SiNWs change drastically in comparison to polished Si. To understand these changes diffuse reflectance (Rd) with polarized incident light was studied. For samples prepared on Si(111), the wavelength integrated Rd (wIRd) shows maxima at certain angle of incidence θ and it does not depend on light polarization. Moreover, Rdt of SiNWs prepared on Si(111) can be modeled as an ensemble of diffuse reflectors. For samples prepared on Si(100) wIRd increases with θ, being greater when the light electric field is parallel to the plane of incidence. Also, Rd spectra show structures due to interference effects. For these reasons SiNWs prepared on Si(100) can be considered as a thin film whose refractive index depends on light polarization.

Type
Articles
Copyright
Copyright © Materials Research Society 2014 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Peng, K., Wang, X., and Lee, S.-T., Appl. Phys. Lett. 92, 163103 (2008).CrossRefGoogle Scholar
Convertino, A., Cuscuna, M., and Martelli, F., Nanotechnology 21, 355701 (2010).CrossRefGoogle Scholar
Xie, W. Q., Oh, J. I., and Shen, W. Z., Nanotechnology 22, 065704 (2011).Google Scholar
Street, R. A., Wong, W. S., and Paulson, C., Nano Letters 9, 3494 (2009).CrossRefGoogle Scholar
Lin, X. X., Hua, X., Huang, Z.G., and Shen, W. Z., Nanotechnology 24, 235402 (2013).CrossRefGoogle Scholar
Jiang, Y., Qin, R., Li, M., Wang, G., Ma, H., and Chang, F., Mater. Sci. Semicon. Proc. 17, 81 (2014).CrossRefGoogle Scholar
Spurgeon, J. M., Atwater, H.A., and Lewis, N.S., J. Phys. Chem. C 112, 6186 (2008).CrossRefGoogle Scholar
Kayes, B. M., Atwater, H. A., Lewis, N. S., J. Appl. Phys. 97 114302 (2005).CrossRefGoogle Scholar
Tena-Zaera, R., Ryan, M.A., Katty, A., Hodes, G., Bastide, S., and Levy-Clemént, C., Chimie, C. R. 9, 717 (2006).Google Scholar
Baxter, J. B. and Aydil, E. S., Appl. Phys. Lett. 86, 053114 (2005).CrossRefGoogle Scholar
Peng, K.-Q., Yan, Y.-J., Gao, S.-P., and Zhu, J., Adv. Mater. 14, 1164 (2002).Google Scholar
Qiu, T., Wu, X. L., Mei, Y. F., Wan, G. J., Chu, P.K., and Siu, G. G., J. Cryst Growth 227, 143 (2005).CrossRefGoogle Scholar
Wu, S.-L., Zhang, T., Zheng, R.-T, and Cheng, G.-A., Appl. Surf. Sci. 258, 9792 (2012).Google Scholar
Branz, H. M., Yost, V. E., Ward, S., Jones, K. M., To, B., and Stradins, P., Appl. Phys. Lett. 94, 231121 (2009).CrossRefGoogle Scholar
Oh, J., Yuan, H.-C., and Branz, H. M., Nature Nanotechnology , 7, 743 (2012).CrossRefGoogle Scholar
Dalchiele, E. A., Martín, F., Leinen, D., Marotti, R. E., and Ramos-Barrado, J. R., Thin Solid Films 518, 1804 (2010).CrossRefGoogle Scholar
Dalchiele, E. A., Martín, F., Leinen, D., Marotti, R. E., and Ramos-Barrado, J. R., J. Electrochem. Soc. 156, K77 (2009).Google Scholar
Nelkomsky, M. and Braunstein, R., Phys. Rev. B 5, 497 (1972).Google Scholar
Forman, R. A., Thurber, W. R., Aspnes, D. E., Solid State Commun. 14, 1007 (1974).CrossRefGoogle Scholar
Green, M. A and Keevers, M., Prog. Photovolt: Res. Appl. 3, 189 (2007).Google Scholar
Oton, C. J., Gaburro, Z., Ghulinyan, M., Pancheri, L., Bettotti, P., Dal Negro, L., and Pavesi, L., Appl. Phy. Lett. 81, 4920 (2002).CrossRefGoogle Scholar