Hostname: page-component-848d4c4894-8kt4b Total loading time: 0 Render date: 2024-06-21T23:18:23.912Z Has data issue: false hasContentIssue false

Optical and Structural Properties of InAs/GaSb Nanostructures

Published online by Cambridge University Press:  01 February 2011

D.W. Stokes
Affiliation:
University of Houston, Department of Physics, Houston, TX, 77204, USA
J.H Li
Affiliation:
University of Houston, Department of Physics, Houston, TX, 77204, USA
R.L. Forrest
Affiliation:
University of Houston-Downtown, Department of Natural Sciences, Houston, TX 77002, USA
S.L. Ammu
Affiliation:
University of Houston, Department of Physics, Houston, TX, 77204, USA
J.C. Lenzi
Affiliation:
University of Houston, Department of Physics, Houston, TX, 77204, USA
S.C. Moss
Affiliation:
University of Houston, Department of Physics, Houston, TX, 77204, USA
B.Z. Nosho
Affiliation:
Naval Research Laboratory, Washington, DC, USA
E.H. Aifer
Affiliation:
Naval Research Laboratory, Washington, DC, USA
B.R. Bennett
Affiliation:
Naval Research Laboratory, Washington, DC, USA
L.J. Whitman
Affiliation:
Naval Research Laboratory, Washington, DC, USA
Get access

Abstract

The nanostructures self-organized via lateral composition modulation in 140 period (InAs)13/(GaSb)13 superlattices grown by molecular beam epitaxy have been studied by highresolution x-ray diffraction and infrared absorption. Three samples were analyzed in this study; two with lateral composition modulation and one without. X-ray reciprocal space map scans were taken to determine the average morphology of the modulated structures. Both vertical and lateral satellite peaks were observed for the samples with composition modulation, indicating the formation of two-dimensional nanowire arrays. The vertical wavelength measured for the two samples was twice the period intended by the growers. This is due to the face-centered cubic type stacking of the nanowires. Infrared absorption spectra of these two samples were compared to the spectra of the sample with no lateral composition modulation. Transitions involving the heavy- and light-hole bands in the GaSb hole quantum well and the electron subbands of the InAs electron quantum well were not evident for the samples with lateral composition modulation, indicating that the nanostructure of the lateral composition modulation affects the optical response of the sample, which is important for optoelectronic device applications.

Type
Research Article
Copyright
Copyright © Materials Research Society 2004

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1 Choi, H. K., Rev. Laser Eng., 25, 14 (1997).Google Scholar
2 Stokes, D. W., Olafsen, L. J., Bewley, W. W., Vurgaftman, I., Felix, C. L., Aifer, E. H., Meyer, J. R., and Yang, M. J., J. Appl. Phys., 86, 4729 (1999).Google Scholar
3 Bewley, W. W., Lee, H., Vurgaftman, I., Menna, R. J., Felix, C. L., Martinelli, R. U., Stokes, D. W., Garbuzov, D. Z., Meyer, J. R., Maiorov, M., Conolly, J. C., Sugg, A. R., and Olsen, G. H., Appl. Phys. Lett., 76, 256 (2000).Google Scholar
4 Aifer, E. H., Jackson, E. M., Boishin, G., Whitman, L. J., Meyer, J. R., Culbertson, J. C., and Bennett, B. R., Appl. Phys. Lett., 82, 4411 (2003).Google Scholar
5 Fuchs, F., Weimer, U., Pletschen, W., Schmitz, J., Ahlswede, E., Walther, M., Wagner, J., and Koidl, P., Appl. Phys. Lett., 71, 3251 (1997).Google Scholar
6 Culbertson, J. C. and Bennett, B. R., Appl. Phys. Lett., 82, 4411 (2003).Google Scholar
7 Wei, Y., Gin, A., Razeghi, M., and Brown, G. J., Appl. Phys. Lett., 81, 3675 (2002).Google Scholar
8 Stokes, D. W., Forrest, R. L., Li, J. H., Moss, S. C., Nosho, B. Z., Whitman, L. J., and Goldenberg, M., J. Appl. Phys., 93, 311 (2002).Google Scholar
9 Nosho, B. Z., Bennett, B. R., and Whitman, L. J., Appl. Phys. Lett., 81, 4452 (2002).Google Scholar
10 Zunger, A. and Mahajan, S., in Handbook on Semiconductors, Vol. 3, 1399 (1994).Google Scholar
11 Wohlert, D. E., Cheng, K. Y., and Chou, S. T., Appl. Phys. Lett., 78, 1047 (2001).Google Scholar
12 Chou, S. T., Cheng, K. Y., Chou, L. J., and Hsieh, K. C., J. Appl. Phys., 78, 6270 (1995).Google Scholar
13 Moy, A. M., Chen, A. C., Cheng, K. Y., Chou, L. J., Hsieh, K. C., and Tu, C.-W., J. Appl. Phys., 80, 7124 (1996).Google Scholar
14 Pearah, P. J., Chen, A. C., Moy, A. M., Hsieh, K. C., and Cheng, K. Y., IEEE J. Quantum Electron., 30, 608 (1994).Google Scholar
15 Arakawa, Y. and Sakaki, H., Appl. Phys. Lett., 40, 939 (1982).Google Scholar
16 Yariv, A., Appl. Phys. Lett., 53, 1033 (1988).Google Scholar
17 Nosho, B. Z., Bennett, B. R., Whitman, L. J., and Goldenberg, M., J. Vac. Sci. Tech. B, 19, 1626 (2001).Google Scholar
18 Feenstra, R. M., Physica B, 273–274, 796 (1999).Google Scholar