Hostname: page-component-8448b6f56d-mp689 Total loading time: 0 Render date: 2024-04-23T20:02:13.288Z Has data issue: false hasContentIssue false

Optical and electrical properties of semi-insulating GaN:C grown by MBE

Published online by Cambridge University Press:  11 February 2011

R. Armitage
Affiliation:
Dept. of Materials Science and Engineering, University of California, Berkeley CA 94720 Materials Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720
Qing Yang
Affiliation:
Dept. of Materials Science and Engineering, University of California, Berkeley CA 94720 Materials Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720
H. Feick
Affiliation:
Center of Advanced European Studies and Research (caesar), Bonn, Germany
S. Y. Tzeng
Affiliation:
Dept. of Materials Science and Engineering, University of California, Berkeley CA 94720 Materials Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720
J. Lim
Affiliation:
Dept. of Materials Science and Engineering, University of California, Berkeley CA 94720 Materials Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720
E. R. Weber
Affiliation:
Dept. of Materials Science and Engineering, University of California, Berkeley CA 94720 Materials Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720
Get access

Abstract

Semi-insulating wurtzite GaN:C of high optical quality is obtained with CCl4 or CS2 doping sources in plasma-assisted molecular-beam epitaxy in Ga-rich growth conditions. The highest resistivity (107 Ω-cm) is found for [C] in the low 1018 cm−3 range. An increasing fraction of carbon appears to form electrically inactive pair defects for higher doping levels causing the concentration of uncompensated residual donors to be higher in films with [C] in the 1019 cm−3 range compared with [C] in the 1018 cm−3 range. Blue (2.9 eV) and yellow (2.2 eV) luminescence bands are associated with carbon-related defects, and additional support is provided for the association of the blue luminescence with the carbon-acceptor deactivating pair defect. Finally, the temperature dependence of the resistivity is described within the grain-boundary controlled transport model of Salzman et al., Appl. Phys. Lett. 76, 1431 (2000).

Type
Research Article
Copyright
Copyright © Materials Research Society 2003

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Tang, H., Webb, J.B., Bardwell, J.A., Raymond, S., Salzman, J., and Uzan-Saguy, C., Appl. Phys. Lett. 78, 757 (2001).Google Scholar
2. As, D.J. and Köhler, U., J. Phys. Condens. Matter 13, 8923 (2001).Google Scholar
3. Wright, A.F., J. Appl. Phys. 92, 2575 (2002).Google Scholar
4. Seager, C.H., Wright, A.F., Yu, J., and Götz, W., J. Appl. Phys. 92, 6553 (2002).Google Scholar
5. Klein, P.B., Binari, S.C., Ikossi, K., Wickenden, A.E., Koleske, D.D., and Henry, R.L., Appl. Phys. Lett. 79, 3529 (2001).Google Scholar
6. Ogino, T. and Aoki, M., Jpn. J. Appl. Phys. 19, 2395 (1980).Google Scholar
7. Birkle, U., Fehrer, M., Kirchner, V., Einfeldt, S., Hommel, D., Strauf, S., Michler, P., and Gutowksi, J., MRS Internet J. Nitride Semicond. Res. 4S1, G5.6 (1999).Google Scholar
8. Armitage, R., Yang, Q., Feick, H., Park, Y., and Weber, E.R., Proc. Mat. Res. Soc. Symp. 719, F1.2 (2002).Google Scholar
9. Neugebauer, J. and Van de Walle, C., Appl. Phys. Lett. 69, 503 (1996).Google Scholar
10. Armitage, R., Hong, W., Yang, Q., Feick, H., Gebauer, J., Weber, E.R., Hautakangas, S., and Saarinen, K., submitted to Appl. Phys. Lett.Google Scholar
11. Salzman, J., Uzan-Saguy, C., Kalish, R., Richter, V., and Meyler, B., Appl. Phys. Lett. 76, 1431 (2000).Google Scholar