Hostname: page-component-8448b6f56d-c47g7 Total loading time: 0 Render date: 2024-04-19T21:26:48.398Z Has data issue: false hasContentIssue false

On the Influence of Boron-Interstitial Complexes on Transient Enhanced Diffusion

Published online by Cambridge University Press:  10 February 2011

D. Stiebel
Affiliation:
Fraunhofer-Institut für Integrierte Schaltungen, Bauelementetechnologie, Schottkystrasse 10, 91058 Erlangen, Germany
P. Pichler
Affiliation:
Fraunhofer-Institut für Integrierte Schaltungen, Bauelementetechnologie, Schottkystrasse 10, 91058 Erlangen, Germany
H. Ryssel
Affiliation:
Lehrstuhl für Elektronische Bauelemente, Universität Erlangen-Nürnberg, Cauerstrasse 6, 91058 Erlangen, Germany
Get access

Abstract

We present new experimental results on the transient enhanced diffusion (TED) of boron after ion implantation. The investigation is focussed on effects that influence TED of shallow profiles in the absence of {311}-defects. Under these conditions, TED is mainly determined by the formation of boron-interstitial complexes (BIC). In addition, effects from the proximity of the surface become more and more important. Insight into the behavior of the dopant atoms is obtained by the comparison with simulations.

Type
Research Article
Copyright
Copyright © Materials Research Society 1999

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Cowern, N.E.B., Janssen, K.T.F., Jos, H.F.F., J. Appl. Phys. 68, 6191 (1990).Google Scholar
2. Stolk, P.A., Gossmann, H.J., Jacobson, D.C., Rafferty, C.S., Gilmer, G.H., Jaraiz, M., Poate, J.M., Lustman, H.S., Haynes, T.E., J. Appl. Phys. 81, 6031 (1997).Google Scholar
3. Eaglesham, D.J., Stolk, P.A., Gossmann, H.J., Poate, J.M., Appl. Phys. Lett. 65, 2305 (1994).Google Scholar
4. Cowern, N.E.B., Walle, G.F.A. van de, Zalm, P.C., Vandenhoudt, D.W.E., Appl. Phys. Lett. 65, 2981 (1994).Google Scholar
5. Jones, K.S., Liu, J., Zhang, L., Electrochem. Soc. Proc. 96, 116 (1996).Google Scholar
6. Zhang, L.H., Jones, K.S., Chi, P.H., Simons, D.S., Appl. Phys. Lett. 67, 2025 (1995).Google Scholar
7. Haynes, T. E., Eaglesham, D. J., Stolk, P. A., Gossmann, H.J., Jacobson, D. C., Poate, J. M., Appl. Phys. Lett. 69, 1376 (1996).Google Scholar
8. Pichler, P., Jiingling, W., Selberherr, S., Guerrero, E., Pötzl, H. W., IEEE Trans. Computer-Aided Design, CAD 4, 384 (1985).Google Scholar
9. Gilmer, G.H., Rubia, T. Diaz de la, Stock, D.M., Jaraiz, M., Nucl. Instr. Meth. Phys. Res. B 102, 247 (1995).Google Scholar
10. Caturla, M.J. (private communication)Google Scholar
11. Sinno, T., Brown, R.A., Ammon, W. von and Dornberger, E., Appl. Phys. Lett. 70, 2250 (1997).Google Scholar
12. Posselt, M., Radiat. Eff. Def. 130/131, 87 (1994).Google Scholar
13. Stiebel, D., Pichler, P., in Simulation of Semiconductor Processes and Devices, edited by Meyer, K. de, Biesemans, S. (SISPAD 98, Springer Verlag, Wien) pp.360363 Google Scholar