Hostname: page-component-76fb5796d-45l2p Total loading time: 0 Render date: 2024-04-25T09:17:04.474Z Has data issue: false hasContentIssue false

On the Diffusion Behaviour in Stressed Ni-Zr Couples

Published online by Cambridge University Press:  26 July 2012

G. Mazzone
Affiliation:
ENEA, Divisione Scienza dei Materiali, CRE Casaccia, C.P. 2400, 00100 ROMA A.D. ITALY
A. Montone
Affiliation:
ENEA, Divisione Scienza dei Materiali, CRE Casaccia, C.P. 2400, 00100 ROMA A.D. ITALY
M. Vittori Antisari
Affiliation:
ENEA, Divisione Scienza dei Materiali, CRE Casaccia, C.P. 2400, 00100 ROMA A.D. ITALY
Get access

Abstract

Solid state reactions at the interface of bulk Ni-Zr couples have been induced at several temperatures by compressive plastic deformation. The reaction product is an amorphous phase whose thickness increases with applied load and sample temperature. In addition, similar samples have been thermally reacted in order to measure the thermal interdiffusion coefficent in the same conditions. Measurements on stressed couples show that the interdiffusion coefficent (several orders of magnitude larger than the corresponding thermal value) follows a dual regime Arrhenius behaviour. The activation energy is independent of load and of the order of 0.2 eV in the low temperature regime extending up to 550 K. A different behaviour characterized by a single value of the activation energy in the whole temperature range has been observed in thermally treated samples.

Type
Research Article
Copyright
Copyright © Materials Research Society 1992

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1) Martelli, S., Mazzone, G., Montone, A. and Antisari, M. Vittori, J.Phys. (Paris), Colloq. 51, C4241, (1990)Google Scholar
2) Mazzone, G., Montone, A. and Antisari, M. Vittori, Phys.Rev.Lett.,65, 2019 (1990)Google Scholar
3) Schultz, L. in Science and Technology of Rapidly Quenced Alloys, edited by Tenhover, M., Johnson, W.L. and Tanner, L.E. (Mater. Res. Soc. Proc. 80, Pittsburgh, PA 1987) pp 97104 Google Scholar
4) Toma, A., J.Phys.:Condens. Matter, 2, 3167 (1990)Google Scholar
5) Cotts, E.J., Meng, W.J. and Johnson, W.L., Phys. Rev. Lett.,57, 2295 (1986)Google Scholar
6) Highmore, R.J., Evett, J.E., Greer, A.L. and Somekh, R.E., Appl. Phys. Lett., 50,566 (1987)Google Scholar
7) Goldstein, J.I., Costley, J.L., Lorrimer, G.W. and Reed, S.J.B. in SEM 1977, edited by Johari, O. (IITRI, Chicago, ILL 1977 ) p 315 Google Scholar
8) Barbour, J.C., Phys. Rev. Lett.,55, 2872 (1985)Google Scholar
9) Kramer, K., Trans. Met. Soc. (AIME), 215, 256 (1959)Google Scholar
10) Newcomb, S.B. and Tu, K.N., Appl. Phys. Lett., 48, 1436 (1986)Google Scholar
11) Meng, W.J., Nieh, C.W. and Johnson, W.L., Appl. Phys. Lett., 51, 1693 (1987)Google Scholar
12) Meng, W.J., Nieh, C.W., Ma, E., Fultz, B. and Johnson, W.L., Mat. Sci. Eng. 97, 87, (1988)Google Scholar
13) Ding, F. Rong, Okamoto, P.R., Rehn, L.E., J. Mater. Res., 4, 1444 (1989)Google Scholar
14) Spaepen, F., Acta Metall., 25, 407 (1977)Google Scholar
15) Argon, A.S., Acta Metall., 27, 47, (1979)Google Scholar
16) Turnbull, D. and Cohen, M.H., J. Chem. Phys., 52, 3038 (1970)Google Scholar
17) Rosato, V., private communicationGoogle Scholar
18) Eckert, J., Schultz, L., Hellstern, E., Urban, K., J. Appl. Phys., 64, 3224, (1988)Google Scholar
19) Hellstern, E., Fecht, H.J., Fu, Z., Johnson, W.L., J.Appl. Phys., 65, 305 (1989)Google Scholar
20) Fecht, H.J., Hellstern, E, Fu, Z., Johnson, W.L., Adv. Powder Met., 1, 111 (1990)Google Scholar