Hostname: page-component-8448b6f56d-qsmjn Total loading time: 0 Render date: 2024-04-24T19:42:53.157Z Has data issue: false hasContentIssue false

Nucleation of p-Type Microcrystalline Silicon on Amorphous Silicon for n-i-p Solar Cells Using B(CH3)3 And BF3 Dopant Source Gases

Published online by Cambridge University Press:  10 February 2011

Joohyun Koh
Affiliation:
Center for Thin Film Devices, The Pennsylvania State University, University Park, PA 16802
H. Fujiwara
Affiliation:
Center for Thin Film Devices, The Pennsylvania State University, University Park, PA 16802
R. J. Koval
Affiliation:
Center for Thin Film Devices, The Pennsylvania State University, University Park, PA 16802
C. R. Wronski
Affiliation:
Center for Thin Film Devices, The Pennsylvania State University, University Park, PA 16802
R. W. Collins
Affiliation:
Center for Thin Film Devices, The Pennsylvania State University, University Park, PA 16802
B. Claflin
Affiliation:
Center for Thin Film Devices, The Pennsylvania State University, University Park, PA 16802
G. Lucovsky
Affiliation:
Center for Thin Film Devices, The Pennsylvania State University, University Park, PA 16802
Get access

Abstract

Real time spectroscopic ellipsometry (RTSE) has been applied to identify optimal conditions for the nucleation and growth of 120 Å microcrystalline silicon (μc-Si:H) p-layers by rf plasma-enhanced chemical vapor deposition (PECVD) at 200°C on amorphous silicon (a-Si:H) i-layers in the n-i-p solar cell configuration. Analysis of the RTSE data provide the bulk p-layer dielectric function (2.5-4.3 eV), whose amplitude and shape yield insights into the structural quality and crystallinity of the p-layer. Among the deposition parameters varied include the underlying i-layer surface treatment, the p-layer plasma power flux, and the p-layer dopant source gas and flow ratio. Here we focus on the differences between p-layer deposition using trimethyl boron, B(CH3)3, and boron trifluoride, BF3, source gases. We find significant differences attributed to the differing effects of F and CH3radicals in the plasma on silicon crystallite growth.

Type
Research Article
Copyright
Copyright © Materials Research Society 1998

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

[1] Guha, S., Yang, J., Nath, P., and Hack, M., Appl. Phys. Lett. 49, 218 (1986).Google Scholar
[2] Collins, R.W., Appl. Phys. Lett. 53, 1086 (1988).Google Scholar
[3] Tarui, H., Matsuyama, T., Okamoto, S., Dohjoh, H., Hishikawa, Y., Nakamura, N., Tsuda, S., Nakano, S., Ohnishi, M., and Kuwano, Y., Jpn. J. Appl. Phys. 28, 2436 (1989).Google Scholar
[4] Fluckiger, R., Meier, J., Shah, A., Catana, A., Brunel, M., Nguyen, H.V., Collins, R.W., and Carius, R., Mater. Res. Soc. Symp. Proc. 336, 511 (1995).Google Scholar
[5] Asano, A. and Sakai, H., Appl. Phys. Lett. 54, 904 (1989).Google Scholar
[6] Collins, R.W., Rev. Sci. Instrum. 61, 2029 (1990).Google Scholar
[7] Koh, J., Fujiwara, H., Wronski, C.R., and Collins, R.W., Mater. Res. Soc. Syrup. Proc. 467, 705 (1997).Google Scholar
[8] Nguyen, H.V., An, I., Collins, R.W., Lu, Y., Wakagi, M., and Wronski, C.R., Appl. Phys. Lett. 65, 3335 (1994).Google Scholar