Hostname: page-component-76fb5796d-45l2p Total loading time: 0 Render date: 2024-04-26T13:48:24.074Z Has data issue: false hasContentIssue false

Nucleation of GaN on (0001) sapphire during MOCVD growth: an atomic force and high resolution electron microscopy study

Published online by Cambridge University Press:  17 March 2011

F. Degave
Affiliation:
ESCTM-CRISMAT, Institut des Sciences de la Matière et du Rayonnement, 6 Bd Maréchal Juin, 14050 Caen Cedex, France
P. Ruterana*
Affiliation:
ESCTM-CRISMAT, Institut des Sciences de la Matière et du Rayonnement, 6 Bd Maréchal Juin, 14050 Caen Cedex, France
G. Nouet
Affiliation:
ESCTM-CRISMAT, Institut des Sciences de la Matière et du Rayonnement, 6 Bd Maréchal Juin, 14050 Caen Cedex, France
J.H. Je
Affiliation:
Department of Materials Science and Engineering, Pohang University of Science and Engineering, Pohang, Korea
C.C. Kim
Affiliation:
Department of Materials Science and Engineering, Pohang University of Science and Engineering, Pohang, Korea
*
Corresponding author, tel: 33 2 45 26 53, fax: 33 2 45 26 60, e-mail: ruterana@lermat8.ismra.fr
Get access

Abstract

The morphology and microstructure of GaN nucleation layers have been studied using atomic force microscopy (AFM) and transmission electron microscopy (TEM). The nucleation layers were grown at 500°C by metalorganic chemical vapour deposition (MOCVD) on (0001) sapphire. Different deposition times were used in order to investigate the evolution of the nucleation layer and try to understand the growth mechanisms. Systematically, it was found that the thinnest layers are mainly defect free and have a cubic structure. The (111) GaN planes are parallel to (0001) sapphire. It is shown that the nucleation follows the Volmer- Weber mechanism and as the islands height increases, the transformation from cubic to wurtzite starts from the substrate surface.

Type
Research Article
Copyright
Copyright © Materials Research Society 2001

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

[1] Amano, H., Sawaki, N., Akasaki, I., and Toyoda, Y., Appl. Phys. Lett. 48, 353 (1986).Google Scholar
[2] Nakamura, S., Jpn. J. Appl. Phys. 30, L1705 (1991).Google Scholar
[3] Stricht, W. Van der, Moerman, I., Demeester, P., Crawley, J. A., Thrush, E. J., Middleton, P. G, Cowan, C. Trager, and O'Donnell, K. P., Mat. Res. Soc. Symp. Proc. 395, 231 (1996).Google Scholar
[4] Ishida, M., Hashimoto, T., Takayama, T., Imafuji, O., Yuri, M., Yoshikawa, A., Itoh, K., Terakoshi, Y., Sugino, T., and Shirafuji, J., Mat. Res. Soc. Symp. Proc. 468, 69 (1997).Google Scholar
[5] Kobayashi, J. T., Kobayashi, N. P., and Dapkus, P. D., Zhang, X. and Rich, D. H., Mat. Res. Soc. Symp. Proc. 468, 187 (1997).Google Scholar
[6] Cheng, L., Zhang, Z., Zhang, G., and Yu, D., Appl. Phys. Lett. 71, 3694 (1997).Google Scholar
[7] Degave, F., Ruterana, P., and Nouet, G., J. Phys.: Condens. Matter 12, 10307 (2000).Google Scholar
[8] Rohrer, G. S., Payne, J., Qian, W., Skowronski, M., Doverspike, K., Rowland, L. B., and Gaskill, D. K, Mat. Res. Soc. Symp. Proc. 395, 381 (1996).Google Scholar
[9] Rouviere, J.-L., Arlery, M., Bourret, A., Niebuhr, R., and Bachem, K.-H., Mat. Res. Soc. Symp. Proc. 395, 393 (1996).Google Scholar
[10] Richards-Babb, M., Buczkowski, S. L., Yu, Z., and Myers, T. H., Mat. Res. Soc. Symp. Proc. 395, 237 (1996).Google Scholar
[11] Wu, X. H., Kapolnek, D., Tarsa, E. J., Heying, B., Keller, S., Keller, B. P., Mishra, U. K., Denbaars, S. P., and Speck, J. S., Appl. Phys. Lett. 68, 1371 (1996).Google Scholar
[12] Vennegues, P., Beaumont, B., Vaille, M. and Gibart, P., J. Crystal Growth 173, 249 (1997).Google Scholar
[13] Cheng, L., Zhang, G., Yu, D., and Zhang, Z., Appl. Phys. Lett. 70, 1408 (1997).Google Scholar
[14] Kim, M. H., Sone, C., Yi, J. H., and Yoon, E., Appl. Phys. Lett. 71, 1228 (1997).Google Scholar
[15] Cheng, L., Zhou, K., Zhang, Z., Zhang, G., Yang, Z., and Tong, Y., Appl. Phys. Lett. 74, 661 (1999).Google Scholar
[16] Yi, M. S., Lee, H., Kim, D. J., Park, J., Noh, D. Y., Kim, C. C., and Je, J. H., Appl. Phys. Lett. 75, 2187 (1999).Google Scholar
[17] Lorenz, K., Gonsalves, M., Kim, W., Narayanan, V., and Mahajan, S., Appl. Phys. Lett. 77, 3391 (2000).Google Scholar
[18] Tietz, L. A., Summerfelt, S. R., English, G. R., and Carter, C. B., Appl. Phys. Lett. 55, 1202 (1989).Google Scholar
[19] Potin, V., Ruterana, P., and Nouet, G., J. Phys.: Condens. Matter 12, 10301 (2000).Google Scholar