Hostname: page-component-76fb5796d-5g6vh Total loading time: 0 Render date: 2024-04-25T15:22:41.250Z Has data issue: false hasContentIssue false

Novel AlGaAs/CaF2 SESAM Device for Ultrashort Pulse Generation

Published online by Cambridge University Press:  21 March 2011

Silke Schön
Affiliation:
Swiss Federal Institute of Technology (ETH), Physics Department / Institute of Quantum Electronics ETH Zurich Hoenggerberg - HPT, CH-8093 Zurich, Switzerland
Lukas Gallmann
Affiliation:
Swiss Federal Institute of Technology (ETH), Physics Department / Institute of Quantum Electronics ETH Zurich Hoenggerberg - HPT, CH-8093 Zurich, Switzerland
Markus Haiml
Affiliation:
Swiss Federal Institute of Technology (ETH), Physics Department / Institute of Quantum Electronics ETH Zurich Hoenggerberg - HPT, CH-8093 Zurich, Switzerland
Ursula Keller
Affiliation:
Swiss Federal Institute of Technology (ETH), Physics Department / Institute of Quantum Electronics ETH Zurich Hoenggerberg - HPT, CH-8093 Zurich, Switzerland
Get access

Abstract

A novel ultrabroadband AlGaAs/CaF2 semiconductor saturable absorber mirror (SESAM) covering nearly the entire Ti:sapphire gain spectrum is demonstrated. This device supports sub-10-fs pulse operation of a laser. In contrast to previous SESAMs of comparable bandwidth, our device can be monolithically grown by molecular beam epitaxy and requires no post-growth processing. GaAs is used as semiconductor saturable absorber material. The high defect concentration of the material is due to the lattice-mismatched growth on a fluoride surface with (111) orientation. With a time response of 1.2 ps for carrier trapping, a saturation fluence of 36 μJ/cm2 and a modulation depth of up to 2.2% , the GaAs saturable absorber is well-suited for all-optical switching in SESAM devices used for ultrashort pulse generation.

Type
Research Article
Copyright
Copyright © Materials Research Society 2002

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. Keller, U., B.Miller, D. A., Boyd, G. D., Chiu, T. H., Ferguson, J. F., and Asom, M. T., Opt. Lett. 17, 505 (1992).Google Scholar
2. Keller, U., Weingarten, K. J., Kärtner, F. X., Kopf, D., Braun, B., Jung, I. D., Fluck, R., Hönninger, C., Matuschek, N., and Au, J. Aus der, IEEE J. Sel. Top. Quantum Electron. 2, 435 (1996).Google Scholar
3. Brovelli, L. R., Jung, I. D., Kopf, D., Kamp, M.,Moser, M., Kärtner, F. X., and Keller, U., Electron. Lett. 31, 287 (1995).Google Scholar
4. Sutter, D. H., Steinmeyer, G., Gallmann, L., Matuschek, N., Morier-Genoud, F., Keller, U., Scheuer, V., Angelow, G., and Tschudi, T., Opt. Lett. 24, 631 (1999).Google Scholar
5. Schön, S., Haiml, M., and Keller, U., Appl. Phys. Lett. 77, 782 (2000).Google Scholar
6. Schön, S., Zogg, H., and Keller, U., J. Cryst. Growth 201/202, 1020 (1999).Google Scholar
7. Desai, C. C., Surf. Technol. 14, 353 (1981).Google Scholar
8. Schön, S., Haiml, M., Achermann, M., and Keller, U., J. Vac. Sci. Technol. B 18, 1701 (2000).Google Scholar
9. Keller, U.: in Nonlinear Optics in Semiconductors Garmire, E., and Kost, A., Eds. (Academic Press, Inc., Boston, 1999), 59, 211.Google Scholar
10. Haiml, M., Siegner, U., Morier-Genoud, F.,Keller, U., Luysberg, M., Lutz, R. C., Specht, P., and Weber, E. R., Appl. Phys. Lett. 74, 3134 (1999).Google Scholar