Hostname: page-component-76fb5796d-2lccl Total loading time: 0 Render date: 2024-04-25T18:08:36.947Z Has data issue: false hasContentIssue false

A Novel AFM Chip for Fountain Pen Nanolithography - Design and Microfabrication

Published online by Cambridge University Press:  01 February 2011

Keun-Ho Kim
Affiliation:
Department of Mechanical Engineering, Northwestern University, 2145 Sheridan Road, Evanston, IL 60208, U.S.A.
Nicolaie Moldovan
Affiliation:
Department of Mechanical Engineering, Northwestern University, 2145 Sheridan Road, Evanston, IL 60208, U.S.A.
Changhong Ke
Affiliation:
Department of Mechanical Engineering, Northwestern University, 2145 Sheridan Road, Evanston, IL 60208, U.S.A.
Get access

Abstract

A novel atomic force microscopy (AFM) probe has been developed to expand the capability and applications of dip-pen nanolithography (DPN) technology. This new probe has integrated microchannels and reservoirs for continuous ink feed, which allow “fountain-pen” writing called “Fountain Pen Nanolithography” (FPN). Ink is transported from the reservoirs through the microchannels and eventually dispensed onto substrates via a volcano-like dispensing tip. Numerical simulations have been performed to select optimal materials and suitable tip shapes providing a stable fluid-air interface in the tip. Microchannel and dispensing tip have been fabricated by surface micromachining, in particular employing 3 layers of thin films. Fluid flow through the microchannels has been experimentally examined. The probe was used to write on a gold substrate.

Type
Research Article
Copyright
Copyright © Materials Research Society 2004

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Piner, R. D., Zhu, J., Xu, F., Hong, S. and Mirkin, C. A., Science 283, 661 (1999).Google Scholar
2. Lee, K.-B., Park, S.-J., Mirkin, C. A., Smith, J. C. and Mrksich, M., Science 295, 1702 (2002).Google Scholar
3. Demers, L. M., Ginger, D. S., Park, S.-J., Li, Z., Chung, S.-W. and Mirkin, C. A., Science 296, 1836 (2002).Google Scholar
4. Ivanisevic, A. and Mirkin, C. A., J. Am. Chem. Soc. 123, 7887 (2001).Google Scholar
5. Su, M., Liu, X., Li, S.-Y., Dravid, V. P. and Mirkin, C. A., J. Am. Chem. Soc. 124, 1560 (2002).Google Scholar
6. Maynor, B. W., Li, Y. and Liu, J., Langmuir 17, 2575 (2001).Google Scholar
7. Li, Y., Maynor, B. W. and Liu, J., Langmuir 123, 2105 (2001).Google Scholar
8. Fu, L., Liu, X., Zhang, Y., Dravid, V. P., Mirkin, C. A., Nano Lett. 3, 757 (2003).Google Scholar
9. Lewis, A., Kheifetz, Y., Shambrodt, E., Radko, A. and Khatchatryan, E., Appl. Phys. Lett. 75, 2689 (1999).Google Scholar
10. Taha, H., Marks, R. S., Gheber, L. A., Rousso, I., Newman, J., Sukenik, C., Lewis, A., Appl. Phys. Lett. 83, 1041 (2003).Google Scholar
11. Hong, M.-H., Kim, K. H., Bae, J. and Jhe, W., Appl. Phys. Lett. 77, 2604 (2000).Google Scholar
12. Meister, A., Jeney, S., Liley, M., Akiyama, T., Staufer, U., de Rooij, N. F. and Heinzelmann, H., Proc. MNE 2002, Lugano, Switzerland.Google Scholar
13. Marcus, R. B., Ravi, T. S., Gmitter, T., Chin, K., Liu, D., Orvis, W. J., Ciarlo, R. D., Hunt, C. E. and Trujillo, J., Appl. Phys. Lett. 56, 236 (1990).Google Scholar
14. Ravi, T. S., Marcus, R. B. and Liu, D., J. Vac. Sci. Technol. B9, 2733 (1991).Google Scholar