Hostname: page-component-cd9895bd7-gbm5v Total loading time: 0 Render date: 2025-01-02T12:55:17.950Z Has data issue: false hasContentIssue false

Nonlinear optical properties of plasma enhanced chemical vapour deposition grown silicon nanocrystals

Published online by Cambridge University Press:  01 February 2011

G. Vijaya Prakash
Affiliation:
INFM and Dipartimento di Fisica, Università di Trento, via Sommarive 14, 38050, Povo, Trento, Italy;
M. Cazzanelli
Affiliation:
INFM and Dipartimento di Fisica, Università di Trento, via Sommarive 14, 38050, Povo, Trento, Italy;
Z. Gaburro
Affiliation:
INFM and Dipartimento di Fisica, Università di Trento, via Sommarive 14, 38050, Povo, Trento, Italy;
L. Pavesi
Affiliation:
INFM and Dipartimento di Fisica, Università di Trento, via Sommarive 14, 38050, Povo, Trento, Italy;
F. Iacona
Affiliation:
CNR-IMETEM, Stradale Primosole 50, 95121 Catania, Italy
F. Priolo
Affiliation:
INFM and Dipartimento di Fisica, Università di Catania, Corso Italia 57, 95129 Catania, Italy
Get access

Abstract

We present a systematic study on the nonlinear optical properties of silicon nanocrystals (Si-nc) grown by plasma enhanced chemical vapour deposition (PECVD). The sign and magnitude of both real and imaginary parts of third-order nonlinear susceptibility χ(3) of Si-nc are measured by Z-scan method. While the closed aperture Z-scan reveals a sign of positive nonlinearity, the open aperture measurements suggests a nonlinear absorption coefficients. Absolute values of χ(3) are in the order of 10-9 esu and show systematic correlation with the Si-nc size, due to quantum confinement related effects.

Type
Research Article
Copyright
Copyright © Materials Research Society 2002

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

[1]. Bisi, O., Ossicini, S., and Pavesi., L., Surface Sci. Rep., 38 (2000), 1 and references thereinGoogle Scholar
[2]. Linnros, J. in “Silicon based Microphotonics: from basics to applications” Ed., Bisi, O., Campisano, S.U., Pavesi, L. and Priolo, F., IOS, Netherlands, (1999) pp. 47 Google Scholar
[3]. Henari, F. Z., Morgenstern, K., Blau, W. J., Karavanski, V. A. and Dneprovskii, V. S., Appl. Phys. Lett., 67, 323 (1995) and references thereinGoogle Scholar
[4]. Lakshmi, S. Vijaya, George, M.A., Grebel, H., Appl. Phys.Lett., 70, 708 (1997)Google Scholar
[5]. Lakshmi, S. Vijaya, Shen, F. and Grebel, H., Appl. Phys. Lett., 71, 3332 (1997)Google Scholar
[6]. Iacona, F., Franzo, G. and Spinella, C., J. Appl. Phys., 87, 1295(2000)Google Scholar
[7]. Prakash, G. Vijaya, et al., J. Nanosci. Nanotech., 1, 159 (2001)Google Scholar
[8]. Prakash, G. Vijaya, Cazzanelli, M., Gaburro, Z., Iacona, F., Franzò, G., Priolo, F. and Pavesi, L.., J.Mod. Optics., 49, (2002) (in press); J. Appy. Phys., (2002) ( in press)Google Scholar
[9]. Sheik-Bahae, M., Said, A.A., Wei, Tai-Huei, Hagan, D. J. and Stryland, E.W. Van, IEEE. J. Qunt. Elec, 26, 760 (1990)Google Scholar
[10]. Bahae, M. Sheik-, Said, A.A. and Van, E.W. Stryland, Opt. Lett., 14, 955 (1989)Google Scholar
[11]. Reitze, D.H., Zang, T.R., Wood, Wm. M., and Downer, M.C., J.Opt. Soc. Am.B.,7, 84, (1990)Google Scholar
[12]. Shen, Y.R.The principles of nonlinear optics”, Willey, New York, (1984)p.p. 202 Google Scholar
[13]. Wynne, J.J., Phys.Rev., 178, 1295 (1969)Google Scholar
[14]. Vogel, E.M., Weber, M.J., and Krol, D.M., Phys. Chem. Glasses, 32, 231 (1991)Google Scholar
[15]. Chen, R., Lin, D.L., B. and , Mendoza, Phys.Rev.B., 48, 11879 (1993)Google Scholar
[16]. Lettieri, S., Fiore, O., Maddalena, P., Ninno, D., Francia, G. Di and Ferrara., V. La, Opt. Commun., 168, 383 (1999)Google Scholar