Hostname: page-component-76fb5796d-x4r87 Total loading time: 0 Render date: 2024-04-25T09:38:17.167Z Has data issue: false hasContentIssue false

Nonlinear Optical Properties of Au Colloid-Doped Glasses

Published online by Cambridge University Press:  28 February 2011

Kohei Kadono
Affiliation:
Government Industrial Research Institute, Osaka, 1–8–31, Midorigaoka, Ikeda, Osaka 563, Japan.
Toru Sakaguchi
Affiliation:
Government Industrial Research Institute, Osaka, 1–8–31, Midorigaoka, Ikeda, Osaka 563, Japan.
Hajimu Wakabayashi
Affiliation:
Government Industrial Research Institute, Osaka, 1–8–31, Midorigaoka, Ikeda, Osaka 563, Japan.
Toshio Fukumi
Affiliation:
Government Industrial Research Institute, Osaka, 1–8–31, Midorigaoka, Ikeda, Osaka 563, Japan.
Hiroshi Yamanaka
Affiliation:
Government Industrial Research Institute, Osaka, 1–8–31, Midorigaoka, Ikeda, Osaka 563, Japan.
Masaru Miya
Affiliation:
Government Industrial Research Institute, Osaka, 1–8–31, Midorigaoka, Ikeda, Osaka 563, Japan.
Hiroshi Tanaka
Affiliation:
Government Industrial Research Institute, Osaka, 1–8–31, Midorigaoka, Ikeda, Osaka 563, Japan.
Get access

Abstract

Degenerate four-wave mixing experiments have been performed for Au colloid-doped glasses prepared by melting and sputtering methods. The nonlinear optical properties of the glasses are discussed from viewpoint of the concentration of the Au colloid particles and the thickness of the glasses. We also discuss the dependence of the nonlinear properties on the pulse duration of laser for the measurements, and a very slow relaxation.

Type
Research Article
Copyright
Copyright © Materials Research Society 1993

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

[1] Heil, E. J. and Hochstrasser, R. M., J. Chem. Phys., 82, 4762 (1985).Google Scholar
[2] Ricard, D., Roussignol, Ph. and Flytzanis, Chr., Opt. Lett., 10, 511 (1985).Google Scholar
[3] Hache, F., Ricard, D. and Flytzanis, C., J. Opt. Soc. Am. B, 3, 1647 (1986).Google Scholar
[4] Hache, F., Ricard, D., Flytzanis, C. and Kreibig, U., Appl. Phys. A, 47, 347 (1988).Google Scholar
[5] Haus, F., Ricard, D. and Girard, C., Phys. Rev. B, 38, 7990 (1988).Google Scholar
[6] Haus, W., Kalyaniwalla, N., Inguva, R., Bloemer, M. and Bowden, C. M., J. Opt. Soc. Am. B, 6, 797 (1989).Google Scholar
[7] Bloemer, M. J., Haus, J. W. and Ashley, P. R.. J. Opt. Soc. Am. B, 7, 790 (1990).Google Scholar
[8] Dutton, T., VanWonterghem, B., Saltiel, S., Chestnoy, N. V., Rentzepis, P. H., Shen, T. P. and Rogovin, D., J. Phys. Chem., 94, 1100 (1990).Google Scholar
[9] Bloemer, M. J., Ashley, P. R., Haus, J. W., Kalyaniwalla, N. and Christensen, C. R., IEEE J. Quant. Elect., 26, 1075 (1990).Google Scholar
[10] Ashley, P. R., Bloemer, M. and Davis, J. H., Appl. Phys. Lett., 57, 1488 (1990).Google Scholar
[11] for example, Halperin, W. P., Rev. Mod. Phys., 58, 533 (1986).Google Scholar
[12] Fukumi, K., Chayahara, A., Kadono, K., Sakaguchi, T., Horino, Y., Miya, M., Hayakawa, J. and Satou, M., Jpn. J. Appl. Phys., 30, L742 (1991).Google Scholar
[13] Fukumi, K., Chayahara, A., Adachi, M., Kadono, K., Sakaguchi, T., Miya, M., Horino, Y., Kitamura, N., Hayakawa, J., Yamashita, H., Fujii, K. and Satou, M., Mat. Res. Svmp. Proc. 235, 389 (1992).Google Scholar
[14] Wakabayashi, H., Yamanaka, H., Kadono, K., Yamashita, M., Sakaguchi, T., Akai, T. and Miya, M., Proc. International Congress on Glasses (1992).Google Scholar
[15] Fukumi, K., Chayahara, A., Kadono, K., Sakaguchi, T., Horino, Y., Miya, M., Hayakawa, J., and Satou, M., to be submitted.Google Scholar
[16] Arnold, G. W., J. Appl. Phys., 46, 4466 (1975).Google Scholar